Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 078101    DOI: 10.1088/1674-1056/26/7/078101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electromechanical actuation of CNT/PVDF composite films based on a bridge configuration

Xiaogang Gu(谷孝刚)1,2,3, Xiaogang Xia(夏小刚)1,2,3, Nan Zhang(张楠)1,3, Zhuojian Xiao(肖卓建)1,2,3, Qingxia Fan(范庆霞)1,3, Feng Yang(杨丰)1,2,3, Shiqi Xiao(肖仕奇)1,2,3, Huiliang Chen(陈辉亮)1,2,3, Weiya Zhou(周维亚)1,2,3, Sishen Xie(解思深)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Bridged strips consisting of carbon nanotubes and poly(vinylidene fluoride) are developed, which exhibit notable deflection in response to very low driven voltages (< 1 V), because of both the excellent conductivity of the unique carbon nanotube film and the powerful thermal expansion capability of the polymer. The actuators demonstrate periodic vibrations motivated by the alternating signals. The amplitude of displacement is dependent not only on the driven voltage but also on the applied frequency. The mechanism of actuation is confirmed to be the thermal power induced by the electrical heating. By accelerating the dissipation of heat, the vibration response at higher frequencies can be significantly enhanced. The useful locomotion shows great promise in potential applications such as miniature smart devices and micro power generators.

Keywords:  carbon nanotube      poly(vinylidene fluoride)      actuator      thermal expansion  
Received:  14 April 2017      Revised:  06 June 2017      Accepted manuscript online: 
PACS:  81.05.U- (Carbon/carbon-based materials)  
  88.30.rh (Carbon nanotubes)  
  88.30.mj (Composite materials)  
  84.50.+d (Electric motors)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No.2012CB932302),the National Natural Science Foundation of China (Grant Nos.11634014,51172271,and 51372269),and the"Strategic Priority Research Program"of the Chinese Academy of Sciences (Grant No.XDA09040202).

Corresponding Authors:  Weiya Zhou, Sishen Xie     E-mail:  wyzhou@iphy.ac.cn;ssxie@iphy.ac.cn

Cite this article: 

Xiaogang Gu(谷孝刚), Xiaogang Xia(夏小刚), Nan Zhang(张楠), Zhuojian Xiao(肖卓建), Qingxia Fan(范庆霞), Feng Yang(杨丰), Shiqi Xiao(肖仕奇), Huiliang Chen(陈辉亮), Weiya Zhou(周维亚), Sishen Xie(解思深) Electromechanical actuation of CNT/PVDF composite films based on a bridge configuration 2017 Chin. Phys. B 26 078101

[1] Dawson J, Vincent J F V and Rocca A M 1997 Nature 390 668
[2] Elbaum R, Zaltzman L, Burgert I and Fratzl P 2007 Science 316 884
[3] Yu M F, Files B S, Arepalli S and Ruoff R S 2000 Phys. Rev. Lett. 84 5552
[4] Peng B, Locascio M, Zapol P, Li S, Mielke S L, Schatz G C and Espinosa H D 2008 Nat. Nanotech. 3 626
[5] Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y and Achiba Y 1999 Synthetic Metals 103 2555
[6] Mann D, Javey A, Kong J, Wang Q and Dai H J 2003 Nano Lett. 3 1541
[7] Pop E, Mann D, Wang Q, Goodson K E and Dai H J 2006 Nano Lett. 6 96
[8] Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Phys. Rev. Lett. 95 065502
[9] Fennimore A M, Yuzvinsky T D, Han W Q, Fuhrer M S, Cumings J and Zettl A 2003 Nature 424 408
[10] Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias T A and McEuen P L 2004 Nature 431 284
[11] Jiang K L, Li Q Q and Fan S S 2002 Nature 419 801
[12] Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M and Windle A 2007 Science 318 1892
[13] Ma W, Liu L, Zhang Z, Yang R, Liu G, Zhang T, An X, Yi X, Ren Y, Niu Z, Li J, Dong H, Zhou W, Ajayan P M and Xie S 2009 Nano Lett. 9 2855
[14] Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild S B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J and Pasquali M 2013 Science 339 182
[15] Wu Z C, Chen Z H, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F and Rinzler A G 2004 Science 305 1273
[16] Song L, Ci L, Lv L, Zhou Z P, Yan X Q, Liu D F, Yuan H J, Gao Y, Wang J X, Liu L F, Zhao X W, Zhang Z X, Dou X Y, Zhou W Y, Wang G, Wang C Y and Xie S S 2004 Adv. Mater. 16 1529
[17] Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L, Ren Y, Liu D, Liu L, Shen J, Zhang Z, Xiang Y, Zhou W and Xie S 2007 Nano Lett. 7 2307
[18] Jiang K, Wang J, Li Q, Liu L, Liu C and Fan S 2011 Advanced Materials 23 1154
[19] Li J, Gao Y, Ma W, Liu L, Zhang Z, Niu Z, Ren Y, Zhang X, Zeng Q, Dong H, Zhao D, Cai L, Zhou W and Xie S 2011 Nanoscale 3 3731
[20] Blackburn J L, Barnes T M, Beard M C, Kim Y H, Tenent R C, McDonald T J, To B, Coutts T J and Heben M J 2008 Acs Nano 2 1266
[21] Foroughi J, Spinks G M, Wallace G G, Oh J, Kozlov M E, Fang S, Mirfakhrai T, Madden J D W, Shin M K, Kim S J and Baughman R H 2011 Science 334 494
[22] Lima M D, Li N, de Andrade M J, Fang S, Oh J, Spinks G M, Kozlov M E, Haines C S, Suh D, Foroughi J, Kim S J, Chen Y, Ware T, Shin M K, Machado L D, Fonseca A F, Madden J D W, Voit W E, Galvao D S and Baughman R H 2012 Science 338 928
[23] Lee J A, Kim Y T, Spinks G M, Suh D, Lepro X, Lima M D, Baughman R H and Kim S J 2014 Nano Lett. 14 2664
[24] Chun K Y, Hyeong Kim S, Kyoon Shin M, Hoon Kwon C, Park J, Tae Kim Y, Spinks G M, Lima M D, Haines C S, Baughman R H and Jeong Kim S 2014 Nature Commun. 5 3322
[25] Lima M D, Hussain M W, Spinks G M, Naficy S, Hagenasr D, Bykova J S, Tolly D and Baughman R H 2015 Small 11 3113
[26] Kwon C H, Chun K Y, Kim S H, Lee J H, Kim J H, Lima M D, Baughman R H and Kim S J 2015 Nanoscale 7 2489
[27] Chen P, Xu Y, He S, Sun X, Pan S, Deng J, Chen D and Peng H 2015 Nat. Nanotech. 10 1077
[28] He S, Chen P, Qiu L, Wang B, Sun X, Xu Y and Peng H 2015 Angewandte Chemie 54 14880
[29] Gu X, Fan Q, Yang F, Cai L, Zhang N, Zhou W, Zhou W and Xie S 2016 Nanoscale 8 17881
[30] Mirfakhrai T, Oh J, Kozlov M, Fok E C W, Zhang M, Fang S, Baughman R H and Madden J D W 2007 Smart Materials and Structures 16 S243
[31] Baughman R H, Cui C X, Zakhidov A A, Iqbal Z, Barisci J N, Spinks G M, Wallace G G, Mazzoldi A, De Rossi D, Rinzler A G, Jaschinski O, Roth S and Kertesz M 1999 Science 284 1340
[32] Hu Y, Chen W, Lu L, Liu J and Chang C 2010 Acs Nano 4 3498
[33] Li J, Ma W, Song L, Niu Z, Cai L, Zeng Q, Zhang X, Dong H, Zhao D, Zhou W and Xie S 2011 Nano Lett. 11 4636
[34] Hu Y, Wang G, Tao X and Chen W 2011 Macromolecular Chemistry and Physics 212 1671
[35] Chen L, Liu C, Liu K, Meng C, Hu C, Wang J and Fan S 2011 Acs Nano 5 1588
[36] Zhang X, Yu Z, Wang C, Zarrouk D, Seo J W, Cheng J C, Buchan A D, Takei K, Zhao Y, Ager J W, Zhang J, Hettick M, Hersam M C, Pisano A P, Fearing R S and Javey A 2014 Nat. Commun. 5 2983
[37] Li Q, Liu C, Lin Y H, Liu L, Jiang K and Fan S 2015 Acs Nano 9 409
[38] Chen L, Weng M, Zhou Z, Zhou Y, Zhang L, Li J, Huang Z, Zhang W, Liu C and Fan S 2015 Acs Nano 9 12189
[39] Tai Y, Lubineau G and Yang Z 2016 Adv. Mater. 28 4665
[40] Chen L, Weng M, Zhang W, Zhou Z, Zhou Y, Xia D, Li J, Huang Z, Liu C and Fan S 2016 Nanoscale 8 6877
[41] Taccola S, Greco F, Sinibaldi E, Mondini A, Mazzolai B and Mattoli V 2015 Adv. Mater. 27 1668
[42] Li B, Du T, Yu B, van der Gucht J and Zhou F 2015 Small 11 3494
[43] Xiao P, Yi N, Zhang T, Huang Y, Chang H, Yang Y, Zhou Y and Chen Y 2016 Adv. Sci. 3 1500438
[44] Zhang Q, Li K, Fan Q, Xia X, Zhang N, Xiao Z, Zhou W, Yang F, Wang Y, Liu H and Zhou W 2017 Chin. Phys. B 26 28802
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[8] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[11] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[12] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[13] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[14] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[15] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
No Suggested Reading articles found!