Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054501    DOI: 10.1088/1674-1056/26/5/054501

Fully nonlinear (2+1)-dimensional displacement shallow water wave equation

Feng Wu(吴锋)1, Zheng Yao(姚征)2, Wanxie Zhong(钟万勰)1
1 State Key Laboratory of Structural Analysis of Industrial Equipment, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116023, China;
2 Transportation Equipments and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
Abstract  Recently, a new (2+1)-dimensional displacement shallow water wave equation (2DDSWWE) was constructed by applying the variational principle of analytic mechanics in the Lagrange coordinates. However, the simplification of the nonlinear term related to the incompressibility of the shallow water in the 2DDSWWE is a disadvantage of this approach. Applying the theory of nonlinear continuum mechanics, we add some new nonlinear terms to the 2DDSWWE and construct a new fully nonlinear (2+1)-dimensional displacement shallow water wave equation (FN2DDSWWE). The presented FN2DDSWWE contains all nonlinear terms related to the incompressibility of shallow water. The exact travelling-wave solution of the proposed FN2DDSWWE is also obtained, and the solitary-wave solution can be deduced from the presented travelling-wave solution under a special selection of integral constants.
Keywords:  shallow water system      Hamilton variational principle      displacement      solitary wave     
Received:  04 November 2016      Published:  05 May 2017
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  94.05.Fg (Solitons and solitary waves)  
  95.30.Lz (Hydrodynamics)  
  47.10.-g (General theory in fluid dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272076 and 51609034) and China Postdoctoral Science Foundation (Grant No. 2016M590219).
Corresponding Authors:  Zheng Yao     E-mail:

Cite this article: 

Feng Wu(吴锋), Zheng Yao(姚征), Wanxie Zhong(钟万勰) Fully nonlinear (2+1)-dimensional displacement shallow water wave equation 2017 Chin. Phys. B 26 054501

[1] Khan A A and Lai W C 2014 Modeling Shallow Water Flows Using the Discontinuous Galerkin Method (New York: CRC Press) p. 49
[2] Vreugdenhil C B 1994 Numerical Methods for Shallow-Water Flow (Netherlands: Springer) p. 1
[3] Kinnmark I 1986 The Shallow Water Wave Equations: Formulation, Analysis and Application (Berlin: Springer) p. 1
[4] Eleuterio F T 2001 Shock-Capturing Methods for Free-Surface Shallow Flows (New York: Wiley) p. 15
[5] Lamb H 1975 Hydrodynamics (6th Edn.) (New York: Cambridge University Press) p. 250
[6] Warren B A and Wunsch C 1981 Evolution of Physical Oceanography (Cambridge: MIT Press) p. 292
[7] Le Méhauté B 1976 An Introduction to Hydrodynamics and Water Waves (New York: Springer) p. 9
[8] Schwámmle V and Herrmann H J 2003 Nature 426 619
[9] Dumbser M and Facchini M 2016 Appl. Math. Comput. 272 336
[10] Berloff N G 2005 Phys. Rev. Lett. 94 120401
[11] Sokolow A, Bittle E G and Sen S 2007 Europhys. Lett. 77 24002
[12] Goodman R H 2008 Chaos 18 270
[13] Teng M H 1997 Journal of Waterway Port Coastal & Ocean Engineering 123 138
[14] Zou L, Zong Z, Wang Z and Tian S 2010 Phys. Lett. A 374 3451
[15] Boussinesq J 1872 Journal of Mathematics Pure and Applied 17 112
[16] Remoissenet M 1996 Waves Called Solitons: Concepts and Experiments (3rd Edn.) (Berline: Springer) p. 60
[17] Shen S F 2006 Acta Phys. Sin. 55 1016 (in Chinese)
[18] Wang Y U and Chen Y 2013 Chin. Phys. B 22 241
[19] Jian M J and Rong Y J 2013 Acta Phys. Sin. 62 130201 (in Chinese)
[20] Li D L and Zhao J X 2009 Chin. Phys. Lett. 26 54701
[21] Wei G, Kirby J T, Grilli S T and Subramanya R 1995 J. Fluid Mech. 294 71
[22] Madsen P A and Schaffer H A 1998 Philos. T. R. Soc. A 356 3123
[23] Krishnan E V, Kumar S and Biswas A 2012 Nonlinear Dynam. 70 1213
[24] Wang J and Zho Z P 2011 Port & Waterway Engineering 11 (in Chinese)
[25] Zhang B S, Lu D Q, Dai S Q and Chen Y L 1998 Advances in Mechanics 28 521
[26] Dong J Z 2011 Methods for Analysing Nonlinear Waves in Shallow Water under Hamiltonian System (Ph.D. Dissertation) (Dalian: Dalian University of Technology) (in Chinese)
[27] Luke J C 1967 J. Fluid Mech. 27 395
[28] Whitham G B 1967 Proceedings of The Royal Society of London Series A-Mathematical and Physical Sciences 299 6
[29] Zakharov V E 1968 Journal of Applied Mechanics & Technical Physics 9 190
[30] Lu D Q, Dai S Q and Zhang B S 1999 Applied Mathematics and Mechanics 20 331
[31] Miles J W 1977 J. Fluid Mech. 83 153
[32] Liu P, Li Z and Luo R 2012 Appl. Math. Comput. 219 2149
[33] Liu P and Lou S Y 2008 Chinese Phys. Lett. 25 3311
[34] Zhong W and Yao Z 2006 Journal of Dalian University of Technology 46 151 (in Chinese)
[35] Yao Z and Zhong W 2016 Computer Aided Engineering 25 21 (in Chinese)
[36] Liu P and Fu P K 2011 Chin. Phys. B 20 90203
[1] Displacement damage in optocouplers induced by high energy neutrons at back-n in China Spallation Neutron Source
Rui Xu(徐瑞), Zu-Jun Wang(王祖军), Yuan-Yuan Xue(薛院院), Hao Ning(宁浩), Min-Bo Liu(刘敏波), Xiao-Qiang Guo(郭晓强), Zhi-Bin Yao(姚志斌), Jiang-Kun Sheng(盛江坤), Wu-Ying Ma(马武英), Guan-Tao Dong(董观涛). Chin. Phys. B, 2020, 29(1): 014210.
[2] A novel particle tracking velocimetry method for complex granular flow field
Bi-De Wang(王必得), Jian Song(宋健), Ran Li(李然), Ren Han(韩韧), Gang Zheng(郑刚), Hui Yang(杨晖). Chin. Phys. B, 2020, 29(1): 014207.
[3] Analysis of displacement damage effects on bipolar transistors irradiated by spallation neutrons
Yan Liu(刘岩), Wei Chen(陈伟), Chaohui He(贺朝会), Chunlei Su(苏春垒), Chenhui Wang(王晨辉), Xiaoming Jin(金晓明), Junlin Li(李俊霖), Yuanyuan Xue(薛院院). Chin. Phys. B, 2019, 28(6): 067302.
[4] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[5] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[6] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[7] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[8] Analysis of multiple cell upset sensitivity in bulk CMOS SRAM after neutron irradiation
Xiaoyu Pan(潘霄宇), Hongxia Guo(郭红霞), Yinhong Luo(罗尹虹), Fengqi Zhang(张凤祁), Lili Ding(丁李利). Chin. Phys. B, 2018, 27(3): 038501.
[9] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[10] Envelope solitary waves and their reflection and transmission due to impurities in a granular material
Wen-Qing Du(杜文青), Jian-An Sun(孙建安), Yang-Yang Yang(杨阳阳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(1): 014501.
[11] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[12] Molecular dynamics simulations of cascade damage near the Y2Ti2O7 nanocluster/ferrite interface in nanostructured ferritic alloys
Yi-Qiang Sun(孙祎强), Wen-Sheng Lai(赖文生). Chin. Phys. B, 2017, 26(7): 076106.
[13] Comparison benchmark between tokamak simulation code and TokSys for Chinese Fusion Engineering Test Reactor vertical displacement control design
Qing-Lai Qiu(仇庆来), Bing-Jia Xiao(肖炳甲), Yong Guo(郭勇), Lei Liu(刘磊), Yue-Hang Wang(汪悦航). Chin. Phys. B, 2017, 26(6): 065205.
[14] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[15] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
No Suggested Reading articles found!