Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 044501    DOI: 10.1088/1674-1056/27/4/044501

Head-on collision between two solitary waves in a one-dimensional bead chain

Fu-Gang Wang(王扶刚)1, Yang-Yang Yang(杨阳阳)1, Juan-Fang Han(韩娟芳)1,2, Wen-Shan Duan(段文山)1,2
1. Institute of Modern Physics & College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of Northwest Normal University, Lanzhou 730070, China;
2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract  The head on collision between two opposite propagating solitary waves is studied in the present paper both numerically and analytically. The interesting result is that no phase shift is observed which is different from that found in other branches of physics. It is found that the maximum amplitude in the process of the head on collision is close to the linear sum of two colliding solitary waves.
Keywords:  discrete system      bead chain      solitary waves  
Received:  24 November 2017      Revised:  12 January 2018      Accepted manuscript online: 
PACS:  45.05.+x (General theory of classical mechanics of discrete systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
  45.70.-n (Granular systems)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2014GB104002), the National Natural Science Foundation of China (Grant No. 11647313), the Youth Science and Technology Foundation of Gansu Province, China (Grant No. 1606RJYA263), and the Institutes of Higher Education Institutions of Gansu Province, China (Grant No. 2015B-022).
Corresponding Authors:  Wen-Shan Duan     E-mail:

Cite this article: 

Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山) Head-on collision between two solitary waves in a one-dimensional bead chain 2018 Chin. Phys. B 27 044501

[1] Korteweg D J and Vries G D 1895 Philosophical Magazine 39 422
[2] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[3] Nesterenko V F 1983 J. Appl. Mech. Tech. Phys. 24 733
[4] Coste C, Falcon E and Fauve S 1997 Phys. Rev. E. 56 6104
[5] Nesterenko V F 2001 Dynamics of Heterogeneous Materials (New York:Springer)
[6] Lazaridi A N and Nesterenko V F 1985 J. Appl. Mech. Tech. Phys. 26 405
[7] Su C H and Mirie R M 1980 J. Fluid Mech. 98 509
[8] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
[9] Huang G X and Velarde M G 1995 Phys. Rev. E 53 2988
[10] Xu Y X, Liu Z M, Lin M M, Shi Y R, Chen J M and Duan W S 2011 Phys. Plasmas 18 052301
[11] Han J N, Du S L and Duan W S 2008 Phys. Plasmas 15 112104
[12] Li S C and Duan W S 2008 Eur. Phys. J. B 62 485
[13] Zhang Y and Ding N 2008 Chin. Phys. B 17 2994
[14] Nejoh Y 1992 Phys. Fluids B:Plasma Physics 4 2830
[15] Sokolow A and Sen S 2005 Phys. Rev. Lett. 94 178002
[16] Nesterenko V F, Daraio C, Herbold E B and Jin S 2005 Phys. Rev. Lett. 95 158702
[17] Job S, Melo F, Sokolow A and Sen S 2007 Granular Matter 10 13
[18] Harbola U, Rosas A, Romero A H, Esposito M and Lindenberg K 2009 Phys. Rev. E 80 051302
[19] Harbola U, Rosas A, Romero A H and Lindenberg K 2010 Phys. Rev. E 82 011306
[20] Melo F, Job S, Santibanez F and Tapia F 2006 Phys. Rev. E 73 041305
[21] Doney R L 2005 Phys. Rev. E 72 041304
[22] Boechler N, Theocharis G, Job S, Kevrekidis P G, Porter M A and Daraio C 2010 Phys. Rev. Lett. 104 244302
[23] Theocharis G, Boechler N, Kevrekidis P G, Job S, Porter M A and Daraio C 2010 Phys. Rev. E 82 056604
[24] Job S, Santibanez F, Tapia F and Melo F 2009 Phys. Rev. E 80 025602
[25] Martinez A J, Yasuda H, Kim E, Kevrekidis P G, Porter M A and Yang J 2016 Phys. Rev. E 93 052224
[26] Li F, Zhao L X, Tian Z H, Yu L Y and Yang J 2013 Smart Mater. Struct. 22 035016
[27] Liu S W, Yang Y Y, Duan W S and Yang L 2015 Phys. Rev. E 92 013202
[28] Shen Y, Kevrekidis P G, Sen S and Hoffman A 2014 Phys. Rev. E 90 022905
[29] Qi X, Xu Y X, Duan W S, Zhang L Y and Yang L 2014 Phys. Plasmas 21 082118
[30] Zhang J, Yang Y, Xu Y X, Yang L, Qi X and Duan W S 2014 Phys. Plasmas 21 103706
[31] Jaiswal S, Bandyopadhyay P and Sen A 2014 Phys. Plasmas 21 053701
[32] Roy K, Chatterjee P and Roychoudhury R 2014 Phys. Plasmas 21 104509
[33] Maxworthy T 1976 J. Fluid Mech. 76 177
[34] Sharma S K, Boruah A and Bailung H 2014 Phys. Rev. E 89 013110
[35] Santibanez F, Munoz R, Caussarieu A, Job S and Melo F 2011 Phys. Rev. E 84 026604
[36] Hinch E J and Saint-Jean S 1999 Proc. R. Soc. Lond. A 455 3201
[37] Spence D A 1968 Proc. Roy. Soc. A 305 55
[38] Leblond H 2008 J. Phys. B:At. Mol. Opt. Phys. 41 043001
[39] Taniuti T and WEI C C 1968 J. Phys. Soc. Jpn. 24 941
[40] Yang Y Y, Liu S W, Yang Q, Zhang Z B, Duan W S and Yang L 2016 AIP Adv. 6 075317
[41] Takato Y and Sen S 2012 Europhys. Lett. 100 24003
[1] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[2] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[3] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[4] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[5] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[6] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[7] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng (陈耀登), Yang Hong-Wei (杨红卫), Gao Yu-Fang (高玉芳), Yin Bao-Shu (尹宝树), Feng Xing-Ru (冯兴如). Chin. Phys. B, 2015, 24(9): 090205.
[8] Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
Reza Mohammadi. Chin. Phys. B, 2015, 24(5): 050206.
[9] Complex dynamical behaviors of compact solitary waves in the perturbed mKdV equation
Yin Jiu-Li (殷久利), Xing Qian-Qian (邢倩倩), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(8): 080201.
[10] Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method
Saïdou Abdoulkary, Alidou Mohamadou, Ousmanou Dafounansou, Serge Yamigno Doka. Chin. Phys. B, 2014, 23(12): 120506.
[11] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[12] The extended cubic B-spline algorithm for a modified regularized long wave equation
İ. Dağ, D. Irk, M. Sarı. Chin. Phys. B, 2013, 22(4): 040207.
[13] Effects of dust size distribution on nonlinear waves in a dusty plasma
Chen Jian-Hong(陈建宏). Chin. Phys. B, 2009, 18(6): 2121-2128.
[14] Effect of dust charge variation on dust-acoustic solitary waves in a magnetized two-ion-temperature dusty plasma
Xue Ju-Kui (薛具奎), Lang He (郎和). Chin. Phys. B, 2003, 12(5): 538-541.
[15] Bifurcation and solitary waves of the nonlinear wave equation with quartic polynomial potential
Hua Cun-Cai (化存才), Liu Yan-Zhu (刘延柱). Chin. Phys. B, 2002, 11(6): 547-552.
No Suggested Reading articles found!