Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054211    DOI: 10.1088/1674-1056/26/5/054211

Silica-based microcavity fabricated by wet etching

H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平)
Department of Electronic Engineering, Optoelectronics Engineering Research Center, Xiamen University, Xiamen 361005, China

Silica whispering gallery mode (WGM) microcavities were fabricated by the buffered oxide etcher and potassium hydroxide wet etching technique without any subsequent chemical or laser treatments. The silicon pedestal underneath was an octagonal pyramid, thus providing a pointed connection area with the top silica microdisk while weakly influencing the resonance modes. The sidewalls of our microdisks were wedge shaped, which was believed to be an advantage for the mode confinement. Efficient coupling from and to the 60 μm diameter microdisk structure was achieved using tapered optical fibres, exhibiting a quality factor of 1.5×104 near a wavelength of 1550 nm. Many resonance modes were observed, and double transverse electric modes were identified by theoretical calculations. The quality factor of the microdisks was also analysed to deduce the cavity roughness. The wet etching technique provides a more convenient avenue to fabricate WGM microdisks than conventional fabrication methods.

Keywords:  whispering gallery mode      wet etching      quality factor  
Received:  23 December 2016      Revised:  21 January 2017      Published:  05 May 2017
PACS:  42.55.Sa (Microcavity and microdisk lasers)  
  42.70.Ce (Glasses, quartz)  

Project supported by the Postdoctoral Science Foundation of China (Grant No. 2015M582041) and the Special Project on the Integration of Industry, Education and Research of Aviation Industry Corporation of China.

Corresponding Authors:  B P Zhang     E-mail:

Cite this article: 

H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平) Silica-based microcavity fabricated by wet etching 2017 Chin. Phys. B 26 054211

[1] Yang S C, Wang Y and Sun H D 2015 Adv. Opt. Mats. 3 1136
[2] Foreman M R, Swaim J D and Vollmer F 2015 Adv. Opt. Photonics 7 168
[3] McCall S L, Levi A F J, Slusher R E and Pearton S J 1992 Appl. Phys. Lett. 60 289
[4] Little B E, Chu S T, Haus H A, Foresi J and Laine J P 1997 IEEE J. Lightwave Technol. 15 998
[5] Wang S J, Huang Y H, Yang Y D, Hu Y H, Xiao J L and Yun D 2010 Chin. Phys. Lett. 27 014213
[6] Li W F, Du J J, Wen R J, Yang P F, Li G and Zhang T C 2014 Acta Phys. Sin. 63 244205 (in Chinese)
[7] Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H and Lv S Q 2015 Chin. Phys. B 24 044208
[8] Kippenberg T J, Spillane S M, Armani D K and Vahala K J 2003 Appl. Phys. Lett. 83 797
[9] Xia J S, Ikegami Y, Nemoto K and Shiraki Y 2007 Appl. Phys. Lett. 90 141102
[10] Pan J S, Cheng P H, Lee T D, Lai Y and Tai K 1998 Jpn. J. Appl. Phys. 37 L643
[11] Lin J T, Xu Y X, Tang J L, Wang N W, Song J X, He F, Fang W and Cheng Y 2014 Appl. Phys. A 116 2019
[12] Gayral B, Gerard J M, Lemaitre A, Dupuis C and Manin L 1999 Appl. Phys. Lett. 75 13
[13] Zhang Z Y, Yang L, Liu V, Hong T, Vahala K and Scherer A 2007 Appl. Phys. Lett. 90 111119
[14] Ning Y Q and Wang L J 1998 Phot. China 3547 164
[15] Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R and Yang L 2010 Nat. Photon. 4 46
[16] Kippenberg T J, Spillane S M and Vahala K J 2004 Appl. Phys. Lett. 85 6113
[17] Armani D K, Kippenberg T J, Spillane S M and Vahala K J 2003 Nature 421 925
[18] Shi S Y, Prather D W, Yang L Q and Kolodzey J 2003 Opt. Eng. 42 383
[19] Bo F, Wang X O, Li Y, Gao F, Zhang G Q and Xu J J 2015 Sci. China-Phys. Mech. Astron. 58 114207
[20] Khanaliloo B, Mitchell M, Hryciw A C and Barclay P E 2015 Nano Lett. 15 5131
[21] Matsko A B and Ilchenko V S 2006 IEEE Journal of Selected Topics in Quantum Electronics 12 3
[22] Monteiro T S, Kastytis P, Goncalves L M, Minas G and Cardoso S 2015 Micromachines 6 1534
[23] Zervas M N, Murugan G S and Wilkinson J S 2018 International Conference on Transparent Optical Networks (ICTON) 2008 Invited paper
[24] Braginsky V B, Gorodetsky M L and Ilchenko V S 1989 Phys. Lett. A 137 393
[25] Gorodetsky M L, Savchenkov A A and Ilchenko V S 1996 Opt. Lett. 21 453
[1] High-efficiency photon-electron coupling resonant emission in GaN-based microdisks on Si
Menghan Liu(刘梦涵), Peng Chen(陈鹏), Zili Xie(谢自力), Xiangqian Xiu(修向前), Dunjun Chen(陈敦军), Bin Liu(刘斌), Ping Han(韩平), Yi Shi(施毅), Rong Zhang(张荣), Youdou Zheng(郑有炓), Kai Cheng(程凯), Liyang Zhang(张丽阳). Chin. Phys. B, 2020, 29(8): 084203.
[2] Analysis of iris-loaded resonance cavity in miniaturized maser
Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣). Chin. Phys. B, 2020, 29(5): 050601.
[3] Coupled resonator-induced transparency on a three-ring resonator
Xinquan Jiao(焦新泉), Haobo Yu(于皓博), Miao Yu(于淼), Chenyang Xue(薛晨阳), Yongfeng Ren(任勇峰). Chin. Phys. B, 2018, 27(7): 074212.
[4] Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at~1.9 μm
Kun Yang(杨坤), Shixun Dai(戴世勋), Yuehao Wu(吴越豪), Qiuhua Nie(聂秋华). Chin. Phys. B, 2018, 27(11): 117701.
[5] High quality factor superconducting coplanar waveguide fabricated with TiN
Qiang Liu(刘强), Guang-Ming Xue(薛光明), Xin-Sheng Tan(谭新生), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(5): 058402.
[6] Self-aligned-gate AlGaN/GaN heterostructure field-effect transistor with titanium nitride gate
Jia-Qi Zhang(张家琦), Lei Wang(王磊), Liu-An Li(李柳暗), Qing-Peng Wang(王青鹏), Ying Jiang(江滢), Hui-Chao Zhu(朱慧超), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(8): 087308.
[7] Microwave interrogation cavity for the rubidium space cold atom clock
Wei Ren(任伟), Yuan-Ci Gao(高源慈), Tang Li(李唐), De-Sheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(6): 060601.
[8] Low threshold fiber taper coupled rare earth ion-doped chalcogenide microsphere laser
Li Chao-Ran, Dai Shi-Xun, Zhang Qin-Yuan, Shen Xiang, Wang Xun-Si, Zhang Pei-Qing, Lu Lai-Wei, Wu Yue-Hao, Lv She-Qin. Chin. Phys. B, 2015, 24(4): 044208.
[9] Improvement in a-plane GaN crystalline quality using wet etching method
Cao Rong-Tao, Xu Sheng-Rui, Zhang Jin-Cheng, Zhao Yi, Xue Jun-Shuai, Ha Wei, Zhang Shuai, Cui Pei-Shui, Wen Hui-Juan, Chen Xing. Chin. Phys. B, 2014, 23(4): 047804.
[10] Resonance-mode effect on piezoelectric microcantilever performance in air, with a focus on the torsional modes
Qiu Hua-Cheng, Dara Feili, Wu Xue-Zhong, Helmut Seidel. Chin. Phys. B, 2014, 23(2): 027701.
[11] Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain
Luo Ji-Run, Cui Jian, Zhu Min, Guo Wei. Chin. Phys. B, 2013, 22(6): 067803.
[12] Rear-surface light intensification caused by Hertzian-conical crack in 355-nm silica optics
Zhang Chun-Lai, Yuan Xiao-Dong, Xiang Xia, Wang Zhi-Guo, Liu Chun-Ming, Li Li, He Shao-Bo, Zu Xiao-Tao. Chin. Phys. B, 2012, 21(9): 094213.
[13] Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits
Xiong Kang, Xiao Xi, Hu Ying-Tao, Li Zhi-Yong, Chu Tao, Yu Yu-De, Yu Jin-Zhong. Chin. Phys. B, 2012, 21(7): 074203.
[14] Enhanced etching of silicon dioxide guided by carbon nanotubes in HF solution
Zhao Hua-Bo, Ying Alex Yi-Qun, Yan Feng, Wei Qin-Qin, Fu Yun-Yi, Zhang Yan, Li Yan, Wei Zi-Jun, Zhang Zhao-Hui. Chin. Phys. B, 2011, 20(10): 108103.
[15] Design, fabrication and characterization of a high-performance microring resonator in silicon-on-insulator
Huang Qing-Zhong, Yu Jin-Zhong, Chen Shao-Wu, Xu Xue-Jun, Han Wei-Hua, Fan Zhong-Chao. Chin. Phys. B, 2008, 17(7): 2562-2566.
No Suggested Reading articles found!