Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047703    DOI: 10.1088/1674-1056/26/4/047703
Special Issue: TOPICAL REVIEW — ZnO-related materials and devices
TOPICAL REVIEW—ZnO-related materials and devices Prev   Next  

ZnO-based deep-ultraviolet light-emitting devices

Ying-Jie Lu(卢英杰)1, Zhi-Feng Shi(史志锋)1, Chong-Xin Shan(单崇新)1,2, De-Zhen Shen(申德振)2
1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China;
2 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033

Deep-ultraviolet (DUV) light-emitting devices (LEDs) have a variety of potential applications. Zinc-oxide-based materials, which have wide bandgap and large exciton binding energy, have potential applications in high-performance DUV LEDs. To realize such optoelectronic devices, the modulation of the bandgap is required. This has been demonstrated by the developments of MgxZn1-xO and BexZn1-xO alloys for the larger bandgap materials. Many efforts have been made to obtain DUV LEDs, and promising successes have been achieved continuously. In this article, we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs.

Keywords:  ZnO      deep-ultraviolet light-emitting devices      MgxZn1-xO      BexZn1-xO     
Received:  22 October 2016      Published:  05 April 2017
PACS:  77.55.hf (ZnO)  
  78.45.+h (Stimulated emission)  
  78.60.Fi (Electroluminescence)  
  85.60.Jb (Light-emitting devices)  

Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61425021) and the Natural Natural Science Foundation of China (Grant Nos. 11374296, 61376054, 61475153, and 61604132).

Corresponding Authors:  Chong-Xin Shan     E-mail:

Cite this article: 

Ying-Jie Lu(卢英杰), Zhi-Feng Shi(史志锋), Chong-Xin Shan(单崇新), De-Zhen Shen(申德振) ZnO-based deep-ultraviolet light-emitting devices 2017 Chin. Phys. B 26 047703

[1] Oto T, Banal R G, Kataoka K, Funato M and Kawakami Y 2010 Nat. Photon. 4 645
[2] Watanabe K, Taniguchi T, Niiyama T, Miya K and Taniguchi M 2009 Nat. Photon. 3 591
[3] Schubert E F and Cho J 2010 Nat. Photon. 4 735
[4] Adivarahan V, Heidari A, Zhang B, Fareed Q, Hwang S, Islam M and Khan A 2009 Appl. Phys. Express 2 102101
[5] Zhang Y T, Xia X C, Wu B, Shi Z F, Yang F, Yang X T, Zhang B L and Du G T 2014 Chin. Phys. Lett. 31 058101
[6] Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
[7] Zhong H M, Lu W, Sun Y and Li Z F 2007 Chin. Phys. Lett. 24 2678
[8] Aoyagi Y and Kurose N 2013 Appl. Phys. Lett. 102 041114
[9] Xia X C, Wang H, Zhao Y, Wang J, Zhao J Z, Shi Z F, Li X P, Liang H W, Zhang B L and Du G T 2011 Chin. Phys. Lett. 28 108101
[10] Hirayama H, Noguchi N, Yatabe T and Kamata N 2008 Appl. Phys. Express 1 051101
[11] Sang D D, Li H D, Chegn S H, Wang Q L, Yu Q and Yang Y Z 2012 Appl. Phys. Lett. 112 036101
[12] Wei B, Liu J Z, Zhang Y, Zhang J H, Peng H N, Fan H L, He Y B and Gao X C 2010 Adv. Funct. Mater. 20 2448
[13] Tan S, Egawa T, Luo X D, Sun L, Zhu Y H and Zhang J C 2016 J. Phys. D: Appl. Phys. 49 125102
[14] Reich C, Guttmann M, Feneberg M, Wernicke T, Mehnke F, Kuhn C, Rass J, Laperrade M, Einfeldt S and Knauer A 2015 Appl. Phys. Lett. 107 142101
[15] Goh E S M, Yang H Y, Han Z J, Chen T P, Ostrikov K 2012 Appl. Phys. Lett. 101 263506
[16] Zhou S Q, Wu M F, Yao S D, Wang L and Jiang F Y 2006 Chin. Phys. Lett. 23 1023
[17] Wang Z J, Wang Z J, Li S C, Wang Z H, Lv Y M and Yuan J S 2004 Chin. Phys. 13 750
[18] Zhao F Q, Zhang M and Bai J H 2015 Chin. Phys. B 24 097105
[19] Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y 1998 Appl. Phys. Lett. 72 2466
[20] Ohtomo A, Tamura K, Kawasaki M, Makino T, Segawa Y, Tang Z K, Wong G K L, Matsumoto Y and Koinuma H 2000 Appl. Phys. Lett. 77 2204
[21] Gruber T, Kirchner C, Kling R, Reuss F, Waag A 2004 Appl. Phys. Lett. 84 5359
[22] Kim W J, Leem J H, Han M S, Park I W, Ryu Y R and Lee T S 2006 J. Appl. Phys. 99 096104
[23] Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Park Y S and Youn C J 2006 Appl. Phys. Lett. 88 241108
[24] Su Y Q, Chen M M, Su L X, Zhu Y and Tang Z K 2016 Chin. Phys. B 25 066106
[25] Roessler D M and Walker W C 1967 Phys. Rev. 159 733
[26] Boguslawski P and Bernholc J 1997 Phys. Rev. B 56 9496
[27] Look D C, Claflin B, Alivov Y I and Park S J 2004 Phys. Status Solidi A 201 2203
[28] Thomas M A and Cui J B 2010 J. Phys. Chem. Lett. 1 1090
[29] Shan C X, Liu J S, Lu Y J, Li B H, Ling F C and Shen D Z 2015 Opt. Lett. 40 3041
[30] Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G and Shen D Z 2012 Appl. Phys. Lett. 101 011106
[31] Liu X Y, Shan C X, Jiao C, Wang S P, Zhao H F and Shen D Z 2014 Opt. Lett. 39 422
[32] Liu J S, Shan C X, Li B H, Zhang Z Z, Liu K W and Shen D Z 2013 Opt. Lett. 38 2113
[33] Echresh A, Chey C O, Shoushtari M Z, Nur O and Willander M 2015 J. Lumin. 160 305
[34] Zhu H, Shan C X, Li B H, Zhang J Y, Yao B, Zhang Z Z, Zhao D X, Shen D Z and Fan X W 2009 J. Phys. Chem. C 113 2980
[35] Chu S, Zhao S J, Xiong Z Q and Chu G 2011 J. Nanosci. Nanotechnol. 11 8527
[36] Walker L G and Pratt G W 1976 J. Appl. Phys. 47 2129
[37] Lagerstedt O, Monemar B and Gislason H 1978 J. Appl. Phys. 49 2953
[38] Thomas B W and Walsh D 1973 Electron Lett. 9 362
[39] Xu Y, Li Y P, Jin Y, Ma X Y and Yang D R 2013 Acta Phys. Sin. 62 084207 (in Chinese)
[40] Wang H T, Kang B S, Chen J J, Anderson T, Jang S and Ren F 2006 Appl. Phys. Lett. 88 102107
[41] Hwang D K, Oh M S, Lim J H, Choi Y S and Park S J 2007 Appl. Phys. Lett. 91 121113
[42] Minamim T, Tanigawa A, Yamanishi M and Kawamura T 1974 Jpn. J. Appl. Phys. 13 1475
[43] Chen P L, Ma X Y and Yang D R 2006 Appl. Phys. Lett. 89 111112
[44] Zhu H, Shan C X, Zhang J Y, Zhang Z Z, Li B H, Zhao D X, Yao B, Shen D Z, Fan X W, Tang Z K, Hou X and Choy K L 2010 Adv. Mater. 22 1877
[45] Zhu H, Shan C X, Li B H, Zhang Z Z, Shen D Z and Choy K L 2011 J. Mater. Chem. 21 2848
[46] Zhu H, Shan C X, Li B H, Zhang Z Z, Yao B and Shen D Z 2011 Appl. Phys. Lett. 99 101110
[47] Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404
[48] Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899
[49] Nakajima Y, Kojima A and Koshida N 2002 Appl. Phys. Lett. 81 2472
[50] Yoshiki N, Tetsuya U, Hajime T, Akira K, Bernard G and Nobuyoshi K 2004 Jpn. J. Appl. Phys. 43 2076
[51] Jiang W, Zhao S, Xu Z and Zhang F 2008 Displays 29 432
[52] Zhao S, Xu Z, Zhang F, Wang Y, Ji G and Xu X 2009 J. Appl. Phys. 106 0235131
[53] Ni P N, Shan C X, Wang S P, Li B H, Zhang Z Z and Shen D Z 2012 Opt. Lett. 37 15681
[54] Ni P N, Shan C X, Li B H and Shen D Z 2014 Appl. Phys. Lett. 104 032107
[55] Xu T N, Wu H Z, Qiu D J and Chen N B 2003 Chin. Phys. Lett. 20 1829
[56] Khoshman J M, Ingram D C and Kordesch M E 2008 Appl. Phys. Lett. 92 0919021
[57] Wu C X, Lv Y M, Shen D Z, Wei Z P, Zhang Z Z, Li B H, Zhang J Y, Liu Y C and Fan X W 2005 Chin. Phys. Lett. 22 2655
[58] Chang Y S, Chien C T, Chen C W, Chu T Y, Chiang H H, Ku C H, Wu J J, Lin C S, Chen L C and K H Chen 2007 J. Appl. Phys. 101 033502
[59] Zhu Y, Chen M M, Su L X, Su Y Q, Ji X, Gui X C and Tang Z K 2014 J. Alloys Compd. 616 505
[60] Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J and Kim W J 2006 Appl. Phys. Lett. 88 052103
[61] Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Park Y S and Youn C J 2006 Appl. Phys. Lett. 88 241108
[62] Ryu Y, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J and Kim B J 2007 Appl. Phys. Lett. 90 131115
[63] Ganmukhi R, Calciati M, Goano M and Bellotti E 2012 Semicond. Sci. Technol. 27 125015
[64] Chen A, Zhu H, Wu Y, Chen M, Zhu Y, Gui X and Tang Z K 2016 Adv. Funct. Mater. 26 3696
[65] Furno E, Chiaria S, Penna M, Bellotti E and Goano M 2010 J. Electron. Mater. 39 936
[66] Panwar N, Liriano J and Katiyar R S 2011 J. Alloys Compd. 509 1222
[67] Su X, Si P, Hou Q, Kong X and Cheng W 2009 Physica B 404 1794
[68] Yang C, Li X M, Gao X D, Cao X, Yang R and Li Y Z 2010 J. Cryst. Growth 312 978
[69] Yang C, Li X M, Gu Y F, Yu W D, Gao X D and Zhang Y W 2008 Appl. Phys. Lett. 93 112114
[70] Lee H Y, Chang H Y, Lou L R and Lee C T 2008 IEEE Photon. Technol. Lett. 25 1770
[1] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[2] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[3] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[4] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[5] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[6] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[7] High efficient Al: ZnO based bifocus metalens in visible spectrum
Pengdi Wang(王鹏迪), Xianghua Zeng(曾祥华). Chin. Phys. B, 2020, 29(10): 104211.
[8] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[9] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[10] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[11] Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东). Chin. Phys. B, 2019, 28(8): 087301.
[12] Effects of active layer thickness on performance and stability of dual-active-layer amorphous InGaZnO thin-film transistors
Wenxing Huo(霍文星), Zengxia Mei(梅增霞), Yicheng Lu(卢毅成), Zuyin Han(韩祖银), Rui Zhu(朱锐), Tao Wang(王涛), Yanxin Sui(隋妍心), Huili Liang(梁会力), Xiaolong Du(杜小龙). Chin. Phys. B, 2019, 28(8): 087302.
[13] Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤). Chin. Phys. B, 2019, 28(4): 048101.
[14] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[15] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
No Suggested Reading articles found!