Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127304    DOI: 10.1088/1674-1056/26/12/127304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum spin Hall and quantum valley Hall effects in trilayer graphene and their topological structures

Majeed Ur Rehman1,2, A A Abid1,2
1. ICQD, Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2. Key Laboratory of Geospace Environment(Chinese Academy of Sciences), Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026, China
Abstract  

The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essence of intrinsic spin-orbit coupling is analytically calculated. We find that for each valley and spin, Cs is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states, consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin-orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin-orbit (RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin-orbit coupling, while the other two layers have zero intrinsic spin-orbit coupling. Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.

Keywords:  trilayer graphene      quantum spin Hall effect      topological insulator      quantum phase transition     
Received:  28 April 2017      Published:  05 December 2017
PACS:  73.43.-f (Quantum Hall effects)  
  73.20.-r (Electron states at surfaces and interfaces)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  73.43.Nq (Quantum phase transitions)  
Corresponding Authors:  Majeed Ur Rehman     E-mail:  majeedqau@live.com

Cite this article: 

Majeed Ur Rehman, A A Abid Quantum spin Hall and quantum valley Hall effects in trilayer graphene and their topological structures 2017 Chin. Phys. B 26 127304

[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Klitzing K V 1985 Nobel Lecture:The Quantized Hall Effect
[3] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[4] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[5] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[6] Xiao G L, Gu F Z, Guang F W, Hua C, Culcer D and Zhen Y Z 2013 Chin. Phys. B 22 097306
[7] Wang J and Zhu B F 2013 Chin. Phys. B 22 067301
[8] Thouless D J, Kohmoto M, Nightingale M P and Nijs M D 1982 Phys. Rev. Lett. 49 405
[9] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[10] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[11] Kane C L and and Mele E J 2005 Phys. Rev. Lett. 95 226801
[12] Buhmanna H 2011 J. Appl. Phys. 109 102409
[13] Li S, Chao L H You Y Y, Ning S D and Yu X D 2013 Chin. Phys. B 22 067201
[14] Ming G H and Ping F S 2012 Chin. Phys. B 21 077303
[15] Ming G H, Lin Z X and Ping F S 2012 Chin. Phys. B 21 0117301
[16] Gmitra M, Konschuh S, Ertler C, Draxl C A and Fabian J 2009 Phys. Rev. B 80 235431
[17] Fu L and Kane C L 2006 Phys. Rev. B 74 195312
[18] Chang M C and Niu Q 1995 Phys. Rev. Lett. 75 1348
[19] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
[20] Park H and Marzari N 2011 Phys. Rev. B 84 205440
[21] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[22] YaoY G, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
[23] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp LW, Qi X L and Zhang S C 2007 Science 318 766
[24] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[25] Tahir M, Manchon A, Sabeeh K and Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412
[26] An X T, Zhang Y Y, Liu J J and Li S S 2013 Appl. Phys. Lett. 102 043113
[27] Xiao A D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[28] Qiao Z, Tse W K, Jiang H, Yao Y and Niu Q 2011 Phys. Rev. Lett. 107 256801
[29] Pan C H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[30] Yang F, Wang H L and Pan H 2017 Chin. Phys. B 26 017102
[31] Yu T H 2015 Chin. Phys. B 24 127301
[32] Mei Z, Wei W L, Jun D and Ying Z 2015 Acta Phys. Sin. 64 107301
[33] Wang K, Ren Y, Deng X, Yang S A, Jung J and Qiao Z 2017 Phys. Rev. B 95 245420
[34] Deng X, Qi S, Han Y, Zhang K, Xu X and Qiao Z 2017 Phys. Rev. B 95 121410
[35] Xu B, Li R and Fu H H 2017 Chin. Phys. B 26 057303
[36] Lu H Z and Shen S Q 2016 Chin. Phys. B 25 0117202
[37] Zheng Y J, Song J T and Li Y X 2016 Chin. Phys. B 25 037301
[38] Zeng J, Ren Y, Zhang K and Qiao Z 2017 Phys. Rev. B 95 045420
[39] Zhang J, Zhao B, Zhou T and Yang Z 2016 Chin. Phys. B 25 117308
[40] Qiao Z, Han Y, Zhang L, Wang K, Deng X, Jiang H, Yang S A, Wang J and Niu Q 2016 Phys. Rev. Lett. 117 056802
[41] Ren Y, Zeng J, Deng X, Yang F, Pan H and Qiao Z 2016 Phys. Rev. B 94 085411
[42] Kormanyos A and Burkard G 2013 Phys. Rev. B 87 045419
[43] Klinovaja J, Ferreira G J and Loss D 2012 Phys. Rev. B 86 235416
[44] Castro Neto A H and Guinea F 2009 Phys. Rev. Lett. 103 026804
[45] Konschuh S, Gmitra M, Kochan D and Fabian J 2012 Phys. Rev. B 85 115423
[46] Prada E, Jose P S, Brey L and Fertig H A 2011 Solid State Commun. 151 1075
[47] Yuan S, Roldan R and Katsnelson M I 2011 Phys. Rev. B 84 125455
[48] Zhang F, Sahu B, Min H and MacDonald A H 2010 Phys. Rev. B 82 035409
[49] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[50] Girvin S M and MacDonald A H 1997 Perspectives in Quantum Hall Effects (Wiley-Interscience)
[51] Volovik G E 2017 Low Temperature Physics 43 47
[52] Zvyagin A A 2016 Low Temperature Physics 42 971
[53] Sinitsyn N A, Hill J E, Min H, Sinova J and MacDonald A H 2006 Phys. Rev. Lett. 97 106804
[54] Schroeter D S and Garst M 2015 Low Temperature Physics 41 817
[55] Yang Y, Xu Z, Sheng L, Wang B, Xing D Y and Sheng D N 2011 Phys. Rev. Lett. 107 066602
[56] Koshino M and McCann E 2009 Phys. Rev. B 80 165409
[1] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[2] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[3] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[4] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[5] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[6] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2020, 29(10): 104302.
[7] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[8] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[9] Scanning tunneling microscopic investigation on morphology of magnetic Weyl semimetal YbMnBi2
Zhen Zhu(朱朕), Dong Yan(严冬), Xiao-Ang Nie(聂晓昂), Hao-Ke Xu(徐豪科), Xu Yang(杨旭), Dan-Dan Guan(管丹丹), Shiyong Wang(王世勇), Yao-Yi Li(李耀义), Canhua Liu(刘灿华), Jun-Wei Liu(刘军伟), Hui-Xia Luo(罗惠霞), Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(7): 077302.
[10] Topological superconductivity in a Bi2Te3/NbSe2 heterostructure: A review
Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(6): 067403.
[11] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
[12] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
[13] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
Ji-Li Liu(刘吉利), Jiu-Qing Liang(梁九卿). Chin. Phys. B, 2019, 28(11): 110304.
[14] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
[15] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
No Suggested Reading articles found!