Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 018102    DOI: 10.1088/1674-1056/26/1/018102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High thermal stability of diamond-cBN-B4C-Si composites

Hong-Sheng Jia(贾洪声)1, Pin-Wen Zhu(朱品文)2, Hao Ye(叶灏)1, Bin Zuo(左斌)1, Yuan-Long E(鄂元龙)1, Shi-Chong Xu(徐仕翀)1, Ji Li(李季)1, Hai-Bo Li(李海波)1, Xiao-Peng Jia(贾晓鹏)2, Hong-An Ma(马红安)2
1. Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China;
2. State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond-cBN-B4C-Si composites sintered at high pressure and high temperature (HPHT, 5.2 GPa, 1620-1680 K for 3-5 min). The results show that the diamond, cBN, B4C, BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B-C, C-N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.
Keywords:  high pressure and high temperature      diamond-cBN-B4C-Si      composites      high thermal stability  
Received:  22 August 2016      Revised:  30 September 2016      Published:  05 January 2017
PACS:  81.05.uj (Diamond/nanocarbon composites)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  81.70.Pg (Thermal analysis, differential thermal analysis (DTA), differential thermogravimetric analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51301075) and the Project of Development and Reform Commission of Jilin Province, China (Grant No. 2014Y136).
Corresponding Authors:  Pin-Wen Zhu, Hai-Bo Li     E-mail:  zhupw@jlu.edu.cn;lihaibo@jlnu.edu.cn

Cite this article: 

Hong-Sheng Jia(贾洪声), Pin-Wen Zhu(朱品文), Hao Ye(叶灏), Bin Zuo(左斌), Yuan-Long E(鄂元龙), Shi-Chong Xu(徐仕翀), Ji Li(李季), Hai-Bo Li(李海波), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安) High thermal stability of diamond-cBN-B4C-Si composites 2017 Chin. Phys. B 26 018102

[1] Bovenkerk H P, Bundy F P, Hall H T, Strong H M and Wentorf R H 1959 Nature 184 1094
[2] Altukhov A A, Afanas'ev M S, Kvaskov V B, Lyubchenko V E, Mityagin Y A, Murav'ev E N, Pomortsev L A, Potapov V A and Spitsyn B V 2004 Inorg. Mater. 40 50
[3] Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899
[4] Ekimov E A, Sidorov V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D and Stishov S M 2004 Nature 428 542
[5] Tillmann W 2000 Int. J. Refract. Met. Hard Mater. 8 301
[6] Tian Y, Xu B and Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93
[7] Xu B and Tian Y 2015 Sci. China-Mater. 58 132
[8] Wang P, He D W, Wang L P, Kou Z L, Li Y, Lun X, Hu Q W, Xu C, Li L, Wang Q M, Liu J and Zhao Y S 2015 Appl. Phys. Lett. 107 101901
[9] Solozhenko V L, Kurakevych O O and Godec Y L 2012 Adv. Mater. 24 1540
[10] Liu G D, Kou Z L, Yan X Z, Li L, Fang P, Wang Q M, Wang K X, Wang P, Liang L, Li Y, Li W T, Wang Y H, Yan B, Yang L and He D W 2015 Appl. Phys. Lett. 106 121901
[11] Badzian A R 1988 Appl. Phys. Lett. 53 2495
[12] Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y and Tian Y J 2014 Nature 510 250
[13] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385
[14] Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385
[15] Xu C, He D W, Wang H K, Wang W D, Tang M J and Wang P 2014 Chin. Sci. Bull. 59 5251
[16] Tang M J, He D W, Wang W D, Wang H K, Xu C, Li F J and Guan J W 2012 Scripta Mater. 66 781
[17] Luo X G, Zhou X F, Liu Z Y, He J L, Xu B, Yu D L, Wang H T and Tian Y J 2008 J. Phys. Chem. C 112 9516
[18] Dubrovinskaia N, Solozhenko V L, Miyajima N, Dmitriev V, Kurakevych O O and Dubrovinsky L 2007 Appl. Phys. Lett. 90 101912
[19] Sumiya H, Uesaka S and Satoh S 2000 J. Mater. Sci. 35 1181
[20] Qian J, Voronin G, Zerda T W, He D and Zhao Y 2002 J. Mater. Res. 17 2153
[21] Qian J, He D, Daemen L and Zhao Y 2003 J. Mater. Res. 18 1173
[22] Cui H Z, Liu W, Cao L L, Song Q, Tian J, Teng F L and Wang J 2015 J Euro. Cera. Soci. 35 3381
[23] Dub S N and Petrusha I A 2006 High Pressure Res. 26 71
[24] Irifune T, Kurio A, Sakamoto S, Inoue T and Sumiya H 2003 Nature 421 599
[25] Zhao Y C and Wang M Z 2008 J. Mater. Process. Tech. 198 134
[26] Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
[27] Li Y, Zhou Z X, Guan X M, Li S S, Wang Y, Jia X P and Ma H A 2016 Chin. Phys. Lett. 33 28101
[28] Li W S, Zhang J, Dong H F, Zhu K, Wang S C, Liu Y and Li Y M 2013 Chin. Phys. B 22 018102
[29] Obraztsov A N, Timofeyev M A, Guseva M B, Babaev V G, Valiulova Z K and Babina V M 1995 Diam. Relat. Mater. 4 968
[30] Prawer S and Nemanieh R J 2004 Phil. Trans. R. Soc. Lond. A 362 2537
[31] Liu X B, Jia X P, Zhang Z F, Zhao M, Guo W, Huang G F and Ma H A 2011 Cryst. Growth Des. 11 1006
[32] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F and Ajayan P M 2010 Nat. Mater. 9 430
[33] Watanabe M O, Itoh S, Mizushima K and Sasaki T 1996 Appl. Phys. Lett. 68 2962
[34] Oswald S and Wirth H 1999 Surf. Interface Anal. 27 136
[35] Dong L L, Wang Y Y, Tong X L, Jin G Q and Guo X Y 2014 Acta. Phys. -Chim. Sin. 30 135
[36] Wang H K, He D W, Xu C, Tang M J, Li Y, Dong H N, Meng C M, Wang Z G and Zhu W J 2013 J. Appl. Phys. 113 043505
[1] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[2] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[3] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[4] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[5] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[6] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[7] Influence of spherical inclusions on effective thermoelectric properties of thermoelectric composite materials
Wen-Kai Yan(闫文凯), Ai-Bing Zhang(张爱兵), Li-Jun Yi(易利军), Bao-Lin Wang(王保林), Ji Wang(王骥). Chin. Phys. B, 2020, 29(5): 057301.
[8] Thermodynamic and structural properties of polystyrene/C60 composites: A molecular dynamics study
Junsheng Yang(杨俊升), Ziliang Zhu(朱子亮), Duohui Huang(黄多辉), Qilong Cao(曹启龙). Chin. Phys. B, 2020, 29(2): 023104.
[9] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[10] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[11] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[12] Inclusions in large diamond single crystals at different temperatures of synthesis
Fei Han(韩飞), Shang-Sheng Li(李尚升), Xue-Fei Jia(贾雪菲), Wei-Qin Chen(陈玮琴), Tai-Chao Su(宿太超), Mei-Hua Hu(胡美华), Kun-Peng Yu(于昆鹏), Jian-Kang Wang(王健康), Yu-Min Wu(吴玉敏), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(2): 028103.
[13] Silica encapsulated ZnO quantum dot-phosphor nanocomposites: Sol-gel preparation and white light-emitting device application
Ya-Chuan Liang(梁亚川), Kai-Kai Liu(刘凯凯), Ying-Jie Lu(卢英杰), Qi Zhao(赵琪), Chong-Xin Shan(单崇新). Chin. Phys. B, 2018, 27(7): 078102.
[14] Graphene-enhanced thermoelectric properties of p-type skutterudites
Dandan Qin(秦丹丹), Yuan Liu(刘嫄), Xianfu Meng(孟宪福), Bo Cui(崔博), Yaya Qi(祁亚亚), Wei Cai(蔡伟), Jiehe Sui(隋解和). Chin. Phys. B, 2018, 27(4): 048402.
[15] Synthesis of diamonds in Fe—C systems using nitrogen and hydrogen co-doped impurities under HPHT
Shi-Shuai Sun(孙士帅), Zhi-Hui Xu(徐智慧), Wen Cui(崔雯), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(9): 098101.
No Suggested Reading articles found!