Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087302    DOI: 10.1088/1674-1056/25/8/087302

Spin-controlled directional launching of surface plasmons at the subwavelength scale

Tao Huang(黄韬)1, Jia-jian Wang(王佳见)2, Zi-wei Li(李梓维)2, Wei Liu(刘伟)1, Feng Lin(林峰)1, Zhe-yu Fang(方哲宇)1,3, Xing Zhu(朱星)1,4
1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
2 Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
4 National Center for Nanoscience and Technology, Beijing 100190, China

In this paper, we demonstrate a spin-controlled directional launching of surface plasmons at the subwavelength scale. Based on the principle of optical spin's effect for the geometric phase of light, the nanostructures were designed. The inclination of the structures decides the spin-related geometric phase and their relative positions decide the distance-related phase. Hence, the propagation direction of the generated surface plasmon polaritons (SPPs) can be controlled by the spin of photons. Numerical simulations by the finite difference time domain (FDTD) method have verified our theoretical prediction. Our structure is fabricated on the Au film by using a focused ion beam etching technique. The total size of the surface plasmon polariton (SPP) launcher is 320 nm by 180 nm. The observation of the SPP launching by using scanning near-field optical microscopy is in agreement with our theory and simulations. This result may provide a new way of spin-controlled directional launching of SPP.

Keywords:  surface plasmon      spin-controlled      directional launching      subwavelength scale     
Received:  03 May 2016      Published:  05 August 2016
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.68.+m (Optical properties of surfaces)  
  78.20.Bh (Theory, models, and numerical simulation)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61176120, 61378059, 60977015, 61422501, and 11374023), the National Basic Research Program of China (Grant Nos. 2012CB933004 and 2015CB932403), and Beijing Natural Science Foundation (Grant No. L140007).

Corresponding Authors:  Xing Zhu     E-mail:

Cite this article: 

Tao Huang(黄韬), Jia-jian Wang(王佳见), Zi-wei Li(李梓维), Wei Liu(刘伟), Feng Lin(林峰), Zhe-yu Fang(方哲宇), Xing Zhu(朱星) Spin-controlled directional launching of surface plasmons at the subwavelength scale 2016 Chin. Phys. B 25 087302

[1] Maier S A 2007 Plamonics:Fundamentals and Applications (New York:Springer-Verlag)
[2] Fang Z Y, Peng Q, Song W T, Hao F H, Wang J, Nordlander P and Zhu X 2011 Nano Lett. 11 893
[3] Lerman G M, Yanai A and Levy U 2009 Nano Lett. 9 2139
[4] Lee B, Kim S, Kim H and Lim Y 2010 Prog. Quantum Electron. 34 47
[5] Li J M, Tang P, Wang J J, Huang T, Lin F, Fang Z Y and Zhu X 2015 Acta Phys. Sin. 64 194201 (in Chinese)
[6] Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D, Akimov A V, Jo M H, Lukin M D and Park H 2009 Nat. Phys. 5 475
[7] Holmgaard T, Gosciniak J and Bozhevolnyi S I 2010 Opt. Express 18 23009
[8] Liu X Y, Zhu L and Feng Y J 2016 Chin. Phys. B 25 034101
[9] Zhong R B, Liu W H, Zhou J and Liu S G 2012 Chin. Phys. B 21 0117303
[10] Volkov V S, Bozhevolnyi S I, Leosson K and Boltasseva A 2003 J. Microsc. 210 324
[11] Pyayt A L, Wiley B, Xia Y N, Chen A and Dalton L 2008 Nat. Nanotechnol. 3 660
[12] Yang J, Xiao X, Hu C, Zhang W W, Zhou S X and Zhang J S 2014 Nano Lett. 14 704
[13] Zhang Y F, Wang H M, Liao H M, Li Z, Sun C W, Chen J J and Gong Q H 2014 Appl. Phys. Lett. 105 231101
[14] Chen J J, Sun C W, Li H Y and Gong Q H 2014 Nanoscale 6 13487
[15] You O B, Bai B F and Li X W 2014 Chin. Opt. Lett. 12 082401
[16] Zhang Z D, Wang H Y, Zhang Z Y and Wang H 2014 Chin. Phys. B 23 017801
[17] Baron A, Devaux E, Rodier J C, Hugonin J P, Rousseau E, Genet C, Ebbesen T W and Lalanne P 2011 Nano Lett. 11 4207
[18] Liu Y M, Palomba S, Park Y, Zentgraf T, Yin X B and Zhang X 2012 Nano Lett. 12 4853
[19] Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C and Capasso F 2013 Science 340 331
[20] Rodriguez-Fortuno F J, Marino G, Ginzburg P, O'Connor D, Martinez A, Wurtz G A and Zayats A V 2013 Science 340 328
[21] Li J M, Tang P, Liu W, Huang T, Wang J J, Wang Y Q, Lin F, Fang Z Y, and Zhu X 2015 Appl. Phys. Lett. 106 161106
[22] Zhu B F, Ren G B, Gao Y X, Wu B L, Wan C L and Jian S S 2015 Opt. Express 23 249613
[23] Huang F, Yang H N, Li S R, Jiang X Q and Sun X D 2015 Plasmonics 10 1825
[24] Bao Y J, Zu S, Zhang Y F and Fang Z Y 2015 ACS Photon. 2 1135
[25] Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic)
[1] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[2] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[3] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[4] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[5] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[6] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[7] Selective excitation of multipolar surface plasmon in a graphene-coated dielectric particle by Laguerre Gaussian beam
Yang Yang(杨阳), Guanghua Zhang(张光华), Xiaoyu Dai(戴小玉). Chin. Phys. B, 2020, 29(5): 057302.
[8] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[9] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[10] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[11] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[12] Sensitivity enhancement of WS 2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), and Jin-Ze Li(李金泽)$. Chin. Phys. B, 2020, 29(11): 110701.
[13] Effect of recombination process in femtosecond laser-induced modification on Ge crystal
Jia-Qi Ju(居家奇), Zi-Yao Qin(秦子尧), Ju-Kun Liu(刘聚坤), Hong-Wei Zhao(赵宏伟), Yao-Qing Huang(黄耀清), Rong-Rong Hu(胡蓉蓉), and Hua Wu(吴华)$. Chin. Phys. B, 2020, 29(11): 114208.
[14] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[15] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
No Suggested Reading articles found!