Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087302    DOI: 10.1088/1674-1056/25/8/087302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-controlled directional launching of surface plasmons at the subwavelength scale

Tao Huang(黄韬)1, Jia-jian Wang(王佳见)2, Zi-wei Li(李梓维)2, Wei Liu(刘伟)1, Feng Lin(林峰)1, Zhe-yu Fang(方哲宇)1,3, Xing Zhu(朱星)1,4
1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
2 Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
4 National Center for Nanoscience and Technology, Beijing 100190, China
Abstract  

In this paper, we demonstrate a spin-controlled directional launching of surface plasmons at the subwavelength scale. Based on the principle of optical spin's effect for the geometric phase of light, the nanostructures were designed. The inclination of the structures decides the spin-related geometric phase and their relative positions decide the distance-related phase. Hence, the propagation direction of the generated surface plasmon polaritons (SPPs) can be controlled by the spin of photons. Numerical simulations by the finite difference time domain (FDTD) method have verified our theoretical prediction. Our structure is fabricated on the Au film by using a focused ion beam etching technique. The total size of the surface plasmon polariton (SPP) launcher is 320 nm by 180 nm. The observation of the SPP launching by using scanning near-field optical microscopy is in agreement with our theory and simulations. This result may provide a new way of spin-controlled directional launching of SPP.

Keywords:  surface plasmon      spin-controlled      directional launching      subwavelength scale  
Received:  03 May 2016      Revised:  18 May 2016      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.68.+m (Optical properties of surfaces)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61176120, 61378059, 60977015, 61422501, and 11374023), the National Basic Research Program of China (Grant Nos. 2012CB933004 and 2015CB932403), and Beijing Natural Science Foundation (Grant No. L140007).

Corresponding Authors:  Xing Zhu     E-mail:  zhuxing@pku.edu.cn

Cite this article: 

Tao Huang(黄韬), Jia-jian Wang(王佳见), Zi-wei Li(李梓维), Wei Liu(刘伟), Feng Lin(林峰), Zhe-yu Fang(方哲宇), Xing Zhu(朱星) Spin-controlled directional launching of surface plasmons at the subwavelength scale 2016 Chin. Phys. B 25 087302

[1] Maier S A 2007 Plamonics:Fundamentals and Applications (New York:Springer-Verlag)
[2] Fang Z Y, Peng Q, Song W T, Hao F H, Wang J, Nordlander P and Zhu X 2011 Nano Lett. 11 893
[3] Lerman G M, Yanai A and Levy U 2009 Nano Lett. 9 2139
[4] Lee B, Kim S, Kim H and Lim Y 2010 Prog. Quantum Electron. 34 47
[5] Li J M, Tang P, Wang J J, Huang T, Lin F, Fang Z Y and Zhu X 2015 Acta Phys. Sin. 64 194201 (in Chinese)
[6] Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D, Akimov A V, Jo M H, Lukin M D and Park H 2009 Nat. Phys. 5 475
[7] Holmgaard T, Gosciniak J and Bozhevolnyi S I 2010 Opt. Express 18 23009
[8] Liu X Y, Zhu L and Feng Y J 2016 Chin. Phys. B 25 034101
[9] Zhong R B, Liu W H, Zhou J and Liu S G 2012 Chin. Phys. B 21 0117303
[10] Volkov V S, Bozhevolnyi S I, Leosson K and Boltasseva A 2003 J. Microsc. 210 324
[11] Pyayt A L, Wiley B, Xia Y N, Chen A and Dalton L 2008 Nat. Nanotechnol. 3 660
[12] Yang J, Xiao X, Hu C, Zhang W W, Zhou S X and Zhang J S 2014 Nano Lett. 14 704
[13] Zhang Y F, Wang H M, Liao H M, Li Z, Sun C W, Chen J J and Gong Q H 2014 Appl. Phys. Lett. 105 231101
[14] Chen J J, Sun C W, Li H Y and Gong Q H 2014 Nanoscale 6 13487
[15] You O B, Bai B F and Li X W 2014 Chin. Opt. Lett. 12 082401
[16] Zhang Z D, Wang H Y, Zhang Z Y and Wang H 2014 Chin. Phys. B 23 017801
[17] Baron A, Devaux E, Rodier J C, Hugonin J P, Rousseau E, Genet C, Ebbesen T W and Lalanne P 2011 Nano Lett. 11 4207
[18] Liu Y M, Palomba S, Park Y, Zentgraf T, Yin X B and Zhang X 2012 Nano Lett. 12 4853
[19] Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C and Capasso F 2013 Science 340 331
[20] Rodriguez-Fortuno F J, Marino G, Ginzburg P, O'Connor D, Martinez A, Wurtz G A and Zayats A V 2013 Science 340 328
[21] Li J M, Tang P, Liu W, Huang T, Wang J J, Wang Y Q, Lin F, Fang Z Y, and Zhu X 2015 Appl. Phys. Lett. 106 161106
[22] Zhu B F, Ren G B, Gao Y X, Wu B L, Wan C L and Jian S S 2015 Opt. Express 23 249613
[23] Huang F, Yang H N, Li S R, Jiang X Q and Sun X D 2015 Plasmonics 10 1825
[24] Bao Y J, Zu S, Zhang Y F and Fang Z Y 2015 ACS Photon. 2 1135
[25] Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic)
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[9] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[14] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!