Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087301    DOI: 10.1088/1674-1056/25/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Advantages of using gold hollow nanoshells in cancer photothermal therapy

Sattar Abbasi1, Mojtaba Servatkhah1, Mohammad Mehdi Keshtkar2
1 Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran;
2 Department of Physics, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran
Abstract  Lots of studies have been conducted on the optical properties of gold nanoparticles in the first region of near infrared (650 nm-950 nm), however new findings show that the second region of near-infrared (1000 nm-1350 nm) penetrates to the deeper tissues of the human body. Therefore, using the above-mentioned region in photo-thermal therapy (PTT) of cancer will be more appropriate. In this paper, absorption efficiency is calculated for gold spherical and rod-shaped nanoshells by the finite element method (FEM). The results show that the surface plasmon frequency of these nanostructures is highly dependent on the dimension and thickness of shell and it can be adjusted to the second region of near-infrared. Thus, due to their optical tunability and their high absorption efficiency the hollow nanoshells are the most appropriate options for eradicating cancer tissues.
Keywords:  surface plasmon      absorption efficiency      near-infrared      nanotubes     
Received:  14 November 2015      Published:  05 August 2016
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  87.50.wp (Therapeutic applications)  
  78.67.Ch (Nanotubes)  
Corresponding Authors:  Sattar Abbasi     E-mail:  abbasi86@mail.com

Cite this article: 

Sattar Abbasi, Mojtaba Servatkhah, Mohammad Mehdi Keshtkar Advantages of using gold hollow nanoshells in cancer photothermal therapy 2016 Chin. Phys. B 25 087301

[1] Brannon-Peppas L and Blanchette J O 2012 Adv. Drug Deliv. Rev. 64 206
[2] Yu J, Huang D Y, Yousaf M Z, Hou Y L and Gao S 2013 Chin. Phys. B 22 027506
[3] Jiao P F, Zhou H Y, Chen L X and Yan B 2011 Curr. Med. Chem. 18 2086
[4] Jain S, Hirst D G and O'Sullivan J M 2012 Br. J. Radiol. 85 101
[5] Wang M and Thanou M 2010 Pharmacol. Res. 62 90
[6] Yu M K, Park J and Jon S 2012 Theranostics. 2 3
[7] Kumar A, Ma H, Zhang X, Huang K, Jin S, Liu J, Wei T, Cao W, Zou G and Liang X J 2012 Biomaterials 33 1180
[8] Dreaden E C, Austin L A, Mackey M A and El-Sayed M A 2012 Ther. Deliv. 3 457
[9] Gil P R and Parak W J 2008 ACS Nano 2 2200
[10] Huang X and El-Sayed M A 2011 Alexandria J. Med. 47 1
[11] Glazer E S and Curley S A 2011 Surg. Oncol. Clin. N. Am. 20 229
[12] Yue X L, Ma F and Dai Z F 2014 Chin. Phys. B 23 044301
[13] Shibu E S, Hamada M, Murase N and Biju V 2013 J. Photochem. Photobiol. C Photochem. Rev. 15 53
[14] Dickerson E B, Dreaden E C, Huang X, El-Sayed I H, Chu H, Pushpanketh S, McDonald J F and El-Sayed M A 2008 Cancer Lett. 269 57
[15] Gobin A M, Lee M H, Halas N J, James W D, Drezek R A and West J L 2007 Nano Lett. 7 1929
[16] Melancon M P, Zhou M and Li C 2011 Acc. Chem. Res. 44 947
[17] Choi W Il, Sahu A, Kim Y H and Tae G 2012 Ann. Biomed. Eng. 40 534
[18] Rozanova N and Zhang J 2009 Sci. China, Ser. B Chem. 52 1559
[19] MacKey M A, Ali M R K, Austin L A, Near R D and El-Sayed M A 2014 J. Phys. Chem. B 118 1319
[20] Kirui D K, Krishnan S, Strickland A D and Batt C A 2011 Macromol. Biosci. 11 779
[21] Lu W, Zhang G, Zhang R, Flores L G, Huang Q, Gelovani J G and Li C 2010 Cancer Res. 70 3177
[22] Vijayaraghavan P, Liu C H, Vankayala R, Chiang C S and Hwang K C 2014 Adv. Mater. 26 6689
[23] Ayala-Orozco C, Urban C, Bishnoi S, Urban A, Charron H, Mitchell T, Shea M, Nanda S, Schiff R, Halas N and Joshi A 2014 J. Control Release 191 90
[24] Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang J Z and Li C 2009 Clin. Cancer Res. 15 876
[25] Mallick S, Sun I C, Kim K and Yi D K 2013 J. Nanosci. Nanotechnol. 13 3223
[26] Yin N Q, Liu L, Lei J M, Jiang T T, Zhu L X and Xu X L 2013 Chin. Phys. B 22 097502
[27] Shao J, Griffin R J, Galanzha E I, Kim J W, Koonce N, Webber J, Mustafa T, Biris A S, Nedosekin D A and Zharov V P 2013 Sci. Rep. 3 1293
[28] Khlebtsov N G and Dykman L A 2010 J. Quantum Spectrosc. Radiat. Transf. 111 1
[29] Henry A I, Bingham J M, Ringe E, Marks L D, Schatz G C and Van Duyne R P 2011 J. Phys. Chem. C 115 9291
[30] Major K J, De C and Obare S O 2009 Plasmonics 4 61
[31] Zhang H X, Gu Y and Gong Q H 2008 Chin. Phys. B 17 2567
[32] Rodríguez-Oliveros R and Sánchez-Gil J A 2012 Opt. Express 20 621
[33] Petryayeva E and Krull U J 2011 Anal. Chim. Acta 706 8
[34] Zhang J and Zhang L 2012 Adv. Opt. Photon. 4 157
[35] Hutter E and Fendler J H 2004 Adv. Mater. 16 1685
[36] Mitchell J 2010 Sensors 10 7323
[37] Xie H N, Larmour I A, Smith W E, Faulds K and Graham D 2012 J. Phys. Chem. C 116 8338
[38] Zeng S, Yu X, Law W C, Zhang Y, Hu R, Dinh X Q, Ho H P and Yong K T 2013 Sensors Actuators B:Chem. 176 1128
[39] Olson T Y, Schwartzberg A M, Orme C A, Talley C E, Conneull B and Zhang J Z 2008 J. Phys. Chem. C 112 6319
[40] Klar T, Perner M, Grosse S, von Plessen G, Spirkl W and Feldmann J 1998 Phys. Rev. Lett. 80 4249
[41] Xiang G, Zhang N and Zhou X 2010 Nanoscale Res. Lett. 5 818
[42] Jain P K, Lee K S, El-Sayed I H and El-Sayed M A 2006 J. Phys. Chem. B 110 7238
[43] Wang J, Wheeler D, Zhang J Z, Achilefu S and Kang K A 2013 Adv. Exp. Med. Biol. 765 323
[44] Lee J, Chatterjee D K, Lee M H and Krishnan S 2014 Cancer Lett. 347 46
[45] You J, Zhang R, Zhang G, Zhong M, Liu Y, Van Pelt C S, Liang D, Wei W, Sood A K and Li C 2012 J. Control Release 158 319
[46] Cheng F Y, Chen C T and Yeh C S 2009 Nanotechnology 20 425104
[47] Sikdar D, Rukhlenko I D, Cheng W and Premaratne M 2013 Nanoscale Res. Lett. 8 142
[48] Han J, Li J, Jia W, Yao L, Li X, Jiang L and Tian Y 2014 ACS Nano 4 1033
[49] Guo L, Panderi I, Yan D D, Szulak K, Li Y, Chen Y T, Ma H, Niesen D B, Seeram N, Ahmed A, Yan B, Pantazatos D and Lu W 2013 ACS Nano 7 8780
[50] Jelveh S and Chithrani D B 2011 Cancers 3 1081
[51] Park J, Park J, Ju E J, Park S S, Choi J, Lee J H, Lee K J, Shin S H, Ko E J, Park I, Kim C, Hwang J J, Lee J S, Song S Y, Jeong S Y and Choi E K 2015 J. Control Release 207 77
[52] Almeida J P M, Figueroa E R and Drezek R A 2014 Nanomed. Nanotech. Biol. Med. 10 503
[53] Melancon M P, Lu W, Yang Z, Zhang R, Cheng Z, Elliot A M, Stafford J, Olson T, Zhang J Z and Li C 2008 Mol. Cancer Ther. 7 1730
[54] Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li Z Y, Zhang H, Xia Y and Li X 2007 Nano Lett. 7 1318
[55] Khlebtsov N and Dykman L 2011 Chem. Soc. Rev. 40 1647
[56] Dreaden E C, Mackey M A, Huang X, Kang B and El-Sayed M A 2011 Chem. Soc. Rev. 40 3391
[57] Lim Z Z J, Li J E J, Ng C T, Yung L Y L and Bay B H 2011 Acta Pharmacol. Sin. 32 983
[58] Boisselier E and Astruc D 2009 Chem. Soc. Rev. 38 1759
[59] Zhang J Z 2010 J. Phys. Chem. Lett. 1 686
[60] Kennedy L C, Bickford L R, Lewinski N A, Coughlin A J, Hu Y, Day E S, West J L and Drezek R A 2011 Small 7 169
[61] Alkilany A M, Thompson L B, Boulos S P, Sisco P N and Murphy C J 2012 Adv. Drug Deliv. Rev. 64 190
[62] Krishnan S R and George S K 2014 Pharmacology and Therapeutics, 8th edn. (Europe:InTech) pp. 235-253
[63] Huang X, Jain P K, El-Sayed I H and El-Sayed M A 2008 Lasers Med. Sci. 23 217
[64] Wang Y, Black K C L, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S Y, Li M, Kim P, Li Z Y, Wang L V, Liu Y and Xia Y 2013 ACS Nano 7 2068
[65] Khlebtsov B, Zharov V, Melnikov A, Tuchin V and Khlebtsov N 2010 Nanotechnology 17 5167
[66] Hong G, Robinson J T, Zhang Y, Diao S, Antaris A L, Wang Q and Dai H 2012 Angew. Chemie Int. Ed. 51 9818
[67] Yasun E, Kang H, Erdal H, Cansiz S, Ocsoy I, Huang Y F and Tan W 2013 Interface Focus 3 20130006
[68] Smith A M, Mancini M C and Nie S 2009 Nat. Nanotechnol. 4 710
[69] Welsher K, Sherlock S P and Dai H 2011 Proc. Natl. Acad. Sci. USA 108 8943
[70] Sun Y, Mayers B and Xia Y 2003 Adv. Mater. 15 641
[71] Abdollahi S N, Naderi M and Amoabediny G 2013 Colloids Surfaces A:Physicochem. Eng. Asp. 436 1069
[72] Zhou L, Yu X F, Fu X F, Hao Z H and Li K Y 2008 Chin. Phys. Lett. 25 1776
[73] Vongsavat V, Vittur B M, Bryan W W, Kim J H and Lee T R 2011 ACS Appl. Mater. Interfaces 3 3616
[74] Zhong X, Chai Y Q and Yuan R 2014 Talanta 128 9
[75] Liang Z, Susha A and Caruso F 2003 Chem. Mater. 15 3176
[76] Cheng K and Sun S 2010 Nano Today 5 183
[77] Ma L N, Liu D J and Wang Z X 2010 Chin. J. Anal. Chem. 38 1
[78] Fan H J, Gosele U and Zacharias M 2007 Small 3 1660
[79] Xie H, Larmour I A, Chen Y C, Wark A W, Tileli V, McComb D W, Faulds K and Graham D 2013 Nanoscale 5 765
[80] Song C, Zhao G, Zhang P and Rosi N L 2010 J. Am. Chem. Soc. 132 14033
[81] An K and Hyeon T 2009 Nano Today 4 359
[82] Lou X W, Archer L A and Yang Z 2008 Adv. Mater. 20 3987
[83] Parsons J, Burrows C P, Sambles J R and Barnes W L 2010 J. Mod. Opt. 57 356
[84] Van De Hulst H C 1981 Light Scattering by Small Particles (New York:Dover)
[85] Mie G 1908 Ann. Phys. 25 377
[86] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles, Vol. 1 (New York:Wiley and Sons, Inc.)
[87] Wriedt T 2012 Mie theory:A review. Springer Ser. Opt. Sci. 169 53
[88] Quinten M 2011 Optical Properties of Nanoparticle Systems:Mie and Beyond (New York:Wiley)
[89] Hergert W and Wriedt T 2012 The Mie Theory:Mie Theory Basics Appl. pp. 53-71
[90] Papoff F and Hourahine B 2011 Opt. Express 19 21432
[91] Xu H X 2003 Phys. Lett. Sect. A:Gen. At. Solid State Phys. 312 411
[92] Salandrino A, Fardad S and Christodoulides D N 2012 J. Opt. Soc. Am. B 29 855
[93] Zienkiewicz O C, Taylor R L and Zhu J Z 2013 Finite Element Method its Basis Fundam. pp. 493-543
[94] Morgan K, Hassan O and Weatherill N P 1981 The Finite Element Method, Acad. Eng. Polish, Acad. Sci. Chin., Acad. Sci. Natl. Acad. Sci. Italy (Academia dei Lincei) 35 110
[95] Nikishkov G 2004 ''Introduction to the finite element method'', University Aizu, pp. 1-70
[96] Polyanskiy M N 2016 Refractive index database, http://refractiveindex.info
[97] Jianming J 2002 The Finite Element Method in Electromagnetics, 2nd edn. (Urbana-Champaign:Wiley-IEEE Press)
[98] Volakis J L, Chatterjee A and Kempel L C 1998 Finite element method for electro-magnetics:antennas, microwave circuits, and scattering applications (Ann Arbor:Wiley-IEEE Press)
[99] Monk P 2003 Finite element methods for Maxwell's equations (Oxford:Oxford University Press)
[100] Davletshin Y 2010 Modeling the optical properties of a single gold nanorod for use in biomedical applications (Toronto:Ryerson University) pp. 10-35
[101] Wang S, Xu H and Ye J 2014 Phys. Chem. 16 12275
[1] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[2] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[3] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[4] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[5] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[6] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[7] Selective excitation of multipolar surface plasmon in a graphene-coated dielectric particle by Laguerre Gaussian beam
Yang Yang(杨阳), Guanghua Zhang(张光华), Xiaoyu Dai(戴小玉). Chin. Phys. B, 2020, 29(5): 057302.
[8] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[9] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[10] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[11] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[12] Sensitivity enhancement of WS 2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), and Jin-Ze Li(李金泽)$. Chin. Phys. B, 2020, 29(11): 110701.
[13] Effect of recombination process in femtosecond laser-induced modification on Ge crystal
Jia-Qi Ju(居家奇), Zi-Yao Qin(秦子尧), Ju-Kun Liu(刘聚坤), Hong-Wei Zhao(赵宏伟), Yao-Qing Huang(黄耀清), Rong-Rong Hu(胡蓉蓉), and Hua Wu(吴华)$. Chin. Phys. B, 2020, 29(11): 114208.
[14] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[15] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
No Suggested Reading articles found!