Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 086301    DOI: 10.1088/1674-1056/25/8/086301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Edge effects on the characteristics of uranium diffusion on graphene and graphene nanoribbons

Cheng Cheng(程诚)1, Han Han(韩晗)1, Cui-Lan Ren(任翠兰)1,2, Chang-Ying Wang(王昌英)1,3, Kuan Shao(邵宽)1, Ping Huai(怀平)1
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The first principles density-functional theoretical calculations of U adatom adsorption and diffusion on a planar graphene and quasi-one-dimensional graphene nanoribbons (GNRs) are performed. An energetic preference is found for U adatom diffusing to the hollow sites of both graphene and GNRs surface. A number of U distinctive diffusion paths either perpendicular or parallel to the ribbon growth direction are examined. The edge effects are evidenced by the calculated energy barriers of U adatom diffusion on armchair and zigzag nanoribbons surfaces. The calculation results indicate that the diffusion of U adatom from the inner site toward the edge site is a feasible process, particularly in zigzag GNR. It is viable to control the initial morphology of nuclear carbon material to retard the diffusion and concentration of nuclides.

Keywords:  diffusion      armchair GNR      zigzagGNR      edge effects  
Received:  19 January 2016      Revised:  07 April 2016      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  68.49.Bc (Atom scattering from surfaces (diffraction and energy transfer))  
Fund: 

Project supported by the International S & T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant Nos. 91326105, 21306220, and 21501189), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).

Corresponding Authors:  Cheng Cheng, Ping Huai     E-mail:  chengcheng@sinap.ac.cn;huaiping@sinap.ac.cn

Cite this article: 

Cheng Cheng(程诚), Han Han(韩晗), Cui-Lan Ren(任翠兰), Chang-Ying Wang(王昌英), Kuan Shao(邵宽), Ping Huai(怀平) Edge effects on the characteristics of uranium diffusion on graphene and graphene nanoribbons 2016 Chin. Phys. B 25 086301

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim AK 2009 Science 324 1530
[3] Verfondern K, Nabielek H and Kendail J M 2007 Nucl. Eng. Technol. 39 603
[4] Yan L, Zheng Y B, Zhao F, Li S J, Gao X F, Xu B Q, Weiss P S and Zhao Y L 2012 Chem. Soc. Rev. 41 97
[5] Shi W Q, Yuan L Y, Li Z J, Lan J H, Zhao Y L and Chai Z F 2012 Radiochimca Acta 100 727
[6] Gan Y, Sun L and Banhart F 2008 Small 4 587
[7] Zan R, Bangert U, Ramasse Q and Novoselov K S 2012 Nano Lett. 11 1087
[8] Zan R, Bangert U, Ramasse Q and Novoselov K S 2011 Small 7 2868
[9] Zan R, Ramasse Q, Bangert U and Novoselov K S 2012 Nano Lett. 12 3936
[10] Ramasse Q, Zan R, Bangert U, Boukhvalov D W and Son Y W 2012 ACS Nano 6 4063
[11] Gleeson M, Kasemo B and Chakarov D 2003 Surf. Sci. 524 L77
[12] Li Z Y, Hock K M and Palmer R E 1991 Phys. Rev. Lett. 67 1562
[13] Li Z Y, Hock K M, Palmer R E and Annett J F 1991 J. Phys.:Condens. Matter 3 103
[14] Hunt M R C, Durston P J and Palmer R E 1996 Surf. Sci. 364 266
[15] Pumera M 2011 Energy Environ. Sci. 4 668
[16] Cretu O, Krasheninnikov A V, Rodríguez-Manzo J A, Sun L T, Nieminen R M and Banhart F 2010 Phys. Rev. Lett. 105 196102
[17] Prezzi D, Eom D, Rim K T, Zhou H, Xiao S X, Nuckolls C, Heinz T F, Flynn G W and Hybertsen M S 2014 ACS Nano 8 5765
[18] Londono H A, Szlufarska I, Bratton R and Morgan D 2012 J. Nucl. Mater. 426 254
[19] Chan K T, Neaton J and Cohen M L 2008 Phys. Rev. B 77 235430
[20] Liu X, Wang C Z, Hupalo M, Lu W, Tringides M C, Yao Y and Ho K M 2012 Phys. Chem. Chem. Phys. 14 9157
[21] Meng S and Gao S 2006 J. Chem. Phys. 125 014708
[22] Meng S, Chakarov D V, Kasemo and Gao B S 2004 J. Chem. Phys. 121 12572
[23] Zhou L J, Hou Z F and Wu L M 2012 J. Phys. Chem. C 116 21780
[24] Valencia H, Gil A and Frapper G 2010 J. Phys. Chem. C 114 14141
[25] Cao C, Wu M, Jiang J and Cheng H P 2010 Phys. Rev. B 81 205424
[26] Longo R C, Carrete J and Gallego L J 2011 Phys. Rev. B 83 234515
[27] Wang Z Y, Xiao J R and Li M 2013 Appl. Phys. A 110 235
[28] Yu G D, Lü X L, Jiang L W, Gao W Z and Zheng Y S 2013 J. Phys. D:Appl. Phys. 46 375303
[29] Sevincli H, Topsakal M, Durgun E and Ciraci S 2008 Phys. Rev. B 77 195434
[30] Ataca C, Aktürk E, Sahin H and Ciraci S 2011 J. Appl. Phys. 109 013704
[31] Luo X F, Fang C, Li X, Lai W S, Sun L F and Liang T X 2013 Appl. Surf. Sci. 285 278
[32] Lan J, Zheng X H, Song L L, Wang R N and Zeng Z 2012 Solid State Commun. 152 1635
[33] Uthaisar C, Barone V and Peralta J E 2009 J. Appl. Phys. 106 113715
[34] Krepel D and Hod O 2011 Surf. Sci. 605 1633
[35] Uthaisar C and Barone V 2010 Nano Lett. 10 2838
[36] Nano Nuclear 2012 Collaborative Report on the Workshop, June 6-8, 2012, Gaithersburg, Maryland
[37] Burns P C 2012 Science 335 1184
[38] Guo T, Diener M D, Chai Y, Alford M J, Haufler R E, McClure S M, Ohno T, Weaver J H, Scuseria G E and Smalley R E 1992 Science 257 1661
[39] Diener M D, Smith C A and Veirs D K 1997 Chem. Mater. 9 1773
[40] Sueki K, Kikuchi K, Akiyama K, Sawa T, Katada M, Ambe S, Ambe F and Nakahara H 1999 Chem. Phys. Lett. 300 140
[41] Akiyama A, Zhao Y L, Sueki K, Tsukada K, Haba H, Nagame Y, Kodama T, Suzuki S, Ohtsuki T, Sakaguchi M, Kikuchi K, Katada M and Nakahara H 2001 J. Am. Chem. Soc. 123 181
[42] Liu X, Li L, Liu B, Wang D Q, Zhao Y L and Gao X F 2012 J. Phys. Chem. A 116 11651
[43] Gagliardi L and Roos B O 2005 Nature 433 848
[44] Lu X, Feng L, Akasaka T and Nagase S 2012 Chem. Soc. Rev. 41 7723
[45] Dai X, Cheng C, Zhang W, Xin M S, Huai P, Zhang R Q and Wang Z G 2013 Sci. Rep. 3 1341
[46] Dai X, Xin M S, Meng Y, Han J, Gao Y, Zhang W, Jin M X, Wang Z G and Zhang R Q 2014 Carbon 78 19
[47] Koh Y W, Westerman K and Manzhos S 2015 Carbon 81 800
[48] Han J, Dai X, Cheng C, Xin M S, Wang Z G, Huai P and Zhang R Q 2013 J. Phys. Chem. C 117 26849
[49] Wu Q Y, Lan J H, Wang C Z, Zhao Y L, Chai Z F and Shi W Q 2014 J. Phys. Chem. A 118 10273
[50] Wu Q Y, Lan J H, Wang C Z, Xiao C L, Zhao Y L, Wei Y Z, Chai Z F and Shi W Q 2014 J. Phys. Chem. A 118 2149
[51] Li Z J, Chen F, Yuan L Y, Zhao Y L, Chai Z F and Shi W Q 2012 Chem. Eng. J. 210 539
[52] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[53] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[54] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[55] Kohn W and Sham L 1965 Phys. Rev. B 140 1133
[56] Blöchl P E 1994 Phys. Rev. B 50 17953
[57] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[58] Perdew J P, Ruzsinszky A, Csonka F I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L and Burke K 2008 Phys. Rev. Lett. 100 136406
[59] Perdew P E, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[60] S. Kurth, Perdew J P and Blaha P 1999 Int. J. Quantum Chem. 75 889
[61] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[62] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[63] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[64] Sheppard D, Terrell R and Henkelamn G 2008 J. Chem. Phys. 128 134106
[65] Vanin M, Mortensen J J, Kelkkanen A, Garcia-Lastra J M, Thygesen K S and Jacobsen K W 2010 Phys. Rev. B 81 081408
[66] Wei M Z, Chen L, Lun N, Sun Y Y, Li D Y and Pan H Z 2011 Solid State Commun. 151 1440
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[3] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[6] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[7] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[8] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[9] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[10] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[11] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[12] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[13] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
[14] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[15] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
No Suggested Reading articles found!