Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078104    DOI: 10.1088/1674-1056/25/7/078104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Perfect spin filtering controlled by an electric field in a bilayer graphene junction: Effect of layer-dependent exchange energy

Kitakorn Jatiyanon1, I-Ming Tang2, Bumned Soodchomshom1
1 Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
2 Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
Abstract  Magneto transport of carriers with a spin-dependent gap in a ferromagnetic-gated bilayer of graphene is investigated. We focus on the effect of an energy gap induced by the mismatch of the exchange fields in the top and bottom layers of an AB-stacked graphene bilayer. The interplay of the electric and exchange fields causes the electron to acquire a spin-dependent energy gap. We find that, only in the case of the anti-parallel configuration, the effect of a magnetic-induced gap will give rise to perfect spin filtering controlled by the electric field. The resolution of the spin filter may be enhanced by varying the bias voltage. Perfect switching of the spin polarization from +100% to -100% by reversing the direction of electric field is predicted. Giant magnetoresistance is predicted to be easily realized when the applied electric field is smaller than the magnetic energy gap. It should be pointed out that the perfect spin filter is due to the layer-dependent exchange energy. This work points to the potential application of bilayer graphene in spintronics.
Keywords:  bilayer graphene      spin filter      magnetoresistance      spintronics  
Received:  11 January 2016      Revised:  26 February 2016      Published:  05 July 2016
PACS:  81.05.ue (Graphene)  
  72.80.Vp (Electronic transport in graphene)  
  72.25.-b (Spin polarized transport)  
  73.43.Qt (Magnetoresistance)  
Fund: Project supported by the Kasetsart University Research and Development Institute (KURDI) and Thailand Research Fund (TRF) (Grant No. TRG5780274).
Corresponding Authors:  Bumned Soodchomshom     E-mail:  Bumned@hotmail.com,fscibns@ku.ac.th

Cite this article: 

Kitakorn Jatiyanon, I-Ming Tang, Bumned Soodchomshom Perfect spin filtering controlled by an electric field in a bilayer graphene junction: Effect of layer-dependent exchange energy 2016 Chin. Phys. B 25 078104

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris Ph 2010 Science 327 662
[3] Schwierz F 2010 Nat. Nanotechnol. 5 487
[4] Kheirabadi N, Shafiekhani A and Fathipour M 2014 Superlatt. Microstruct. 74 123
[5] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[6] Katsnelson M I and Novoselov K S 2007 Solid State Commun. 143 3
[7] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
[8] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[9] Swartz A G, Odenthal P M, Hao Y, Ruoff R S and Kawakami R K 2012 ACS Nano 6 10063
[10] Cobas E, Friedman A L, van't Erve O M J, Robinson J T and Jonker B T 2012 Nano Lett. 12 3000
[11] Yang H X, Hallal A, Terrade D, Waintal X, Roche S and Chshiev M 2013 Phys. Rev. Lett. 110 046603
[12] Wang Z, Tang C, Sachs R, Barlas Y and Shi J 2015 Phys. Rev. Lett. 114 016603
[13] Park J H and Lee H J 2014 Phys. Rev. B 89 165417
[14] Soodchomshoma B, Tanga I M and Hoonsawata R 2009 Physica E 41 1310
[15] Bai J, Cheng R, Xiu F, Liao L, Wang M, Shailos A, Wang K L, Huang Y and Duan V 2010 Nat. Nanotechnol. 5 655
[16] Song Y and Dai G 2015 Appl. Phys. Lett. 106 223104
[17] Zhang Y T, Jiang H, Sun Q F and Xie X C 2010 Phys. Rev. B 81 165404
[18] Soodchomshom B and Chantngarm P 2011 J. Supercond. Nov. Magn. 24 1885
[19] Fujita T, Jalil M B A and Tan S G 2010 Appl. Phys. Lett. 97 043508
[20] Grujić M M, Tadić M Z and Peeters F M 2014 Phys. Rev. Lett. 113 046601
[21] Castro N A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[22] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y and Wang F 2009 Nature 459 820
[23] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[24] Derakhshan V and Cheraghchi H 2014 J. Magn. Magn. Mater. 357 29
[25] Semenov Y G, Zavada J M and Kim K W 2008 Phys. Rev. B 77 235415
[26] Cheraghchi H and Adinehvand F 2012 J. Phys. Condens. Matter 24 045303
[27] Castro E V, Lòpez-Sancho M P and Vozmediano M A H 2011 Phys. Rev. B 84 075432
[28] Michetti P and Recher P 2011 Phys. Rev. B 84 125438
[29] Castro E V, Peres N M R, Stauber T and Silva N A P 2008 Phys. Rev. Lett. 100 186803
[30] Lee K, Fallahazad B, Xue J, Dillen D C, Kim K, Taniguchi T, Watanabe K and Tutuc E 2014 Science 345 58
[31] Hung N V, Bournel A and Dollfus P 2011 J. Appl. Phys. 109 073717
[32] Yokoyama T 2008 Phys. Rev. B 77 073413
[33] McCann E and Fal'ko V I 2006 Phys. Rev. Lett. 96 086805
[34] Landauer R 1957 IBM J. Res. Dev. 1 223
[1] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[2] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[3] Anomalous magnetoresistance in detwinned EuFe2As2
Zhuang Xu(徐状), Junxiang Pan(潘俊香), Zhen Tao(陶镇), Ruixian Liu(刘瑞鲜), Guotai Tan(谈国太). Chin. Phys. B, 2020, 29(7): 077402.
[4] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
[5] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[6] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[7] Investigation of the magnetoresistance in EuS/Nb:SrTiO3 junction
Jia Lu(芦佳), Yu-Lin Gan(甘渝林), Yun-Lin Lei(雷蕴麟), Lei Yan(颜雷), and Hong Ding(丁洪)$. Chin. Phys. B, 2020, 29(11): 117503.
[8] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[9] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[10] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[11] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[12] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[13] Model of output characteristics of giant magnetoresistance (GMR) multilayer sensor
Jiao-Feng Zhang(张教凤), Zheng-Hong Qian(钱正洪), Hua-Chen Zhu(朱华辰), Ru Bai(白茹), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2019, 28(8): 087501.
[14] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[15] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
No Suggested Reading articles found!