Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077301    DOI: 10.1088/1674-1056/25/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Compact surface plasmon amplifier in nonlinear hybrid waveguide

Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁)
National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Abstract  

Surface plasmon polariton (SPP), a sub-wavelength surface wave promising for photonic integration, always suffers from the large metallic loss that seriously restricts its practical application. Here, we propose a compact SPP amplifier based on a nonlinear hybrid waveguide (a combination of silver, LiNbO3, and SiO2), where a couple of Bragg gratings are introduced in the waveguide to construct a cavity. This special waveguide is demonstrated to support a highly localized SPP-like hybrid mode and a low loss waveguide-like hybrid mode. To provide a large nonlinear gain, a pumping wave input from the LiNbO3 waveguide is designed to resonate inside the cavity and satisfy the cavity phase matching to fulfill the optical parametric amplification (OPA) of the SPP signal. Proper periods of gratings and the cavity length are chosen to satisfy the impedance matching condition to ensure the high input efficiency of the pump wave from the outside into the cavity. In theoretical calculations, this device demonstrates a high performance in a very compact scheme (~ 3.32 μm) and a much lower pumping power for OPA compared with single-pass pumping. To obtain a comprehensive insight into this cavity OPA, the influences of the pumping power, cavity length, and the initial phase are discussed in detail.

Keywords:  surface plasmons      optical parametric amplification      waveguides  
Received:  14 April 2016      Published:  05 July 2016
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.65.Wi (Nonlinear waveguides)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB921501), the National Natural Science Foundation of China (Grant Nos. 11322439, 11274165, 11321063, and 91321312), the Dengfeng Project B of Nanjing University, China, and the PAPD of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Tao Li     E-mail:  taoli@nju.edu.cn

Cite this article: 

Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁) Compact surface plasmon amplifier in nonlinear hybrid waveguide 2016 Chin. Phys. B 25 077301

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Leon I D and Berini P 2008 Phys. Rev. B 78 161401(R)
[3] Burke J J, Stegeman G I and Tamir T 1986 Phys. Rev. B 33 5186
[4] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[5] Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496
[6] Holmgaard T and Bozhevolnyi S 2007 Phys. Rev. B 75 245405
[7] Holmgaard T, Gosciniak J and Bozhevolnyi S 2010 Opt. Express 18 23009
[8] Lu F F, Li T, Hu X P, Cheng Q Q, Zhu S N and Zhu Y Y 2011 Opt. Lett. 36 3371
[9] Lu F F, Li T, Xu J, Xie Z D, Li L, Zhu S N and Zhu Y Y 2011 Opt. Express 19 2858
[10] Simon H J, Mitchell D E and Watson J G 1974 Phys. Rev. Lett. 33 1531
[11] Simon H J, Benner R E and Rako J G 1977 Opt. Commun. 23 245
[12] Palomba S and Novotny L 2008 Phys. Rev. Lett. 101 056802
[13] Xie Z D, Lv X J, Liu Y H, Ling W, Wang Z L, Fan Y X and Zhu S N 2011 Phys. Rev. Lett. 106 083901
[14] Armstrong J A, Bloembergen N, Ducuing J and Pershan P S 1962 Phys. Rev. 127 1918
[15] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[16] Edwards G J and Lawrence M 1984 Opt. Quantum Electron. 16 373
[17] Akulova Y A, Fish G A, Koh P C, Schow C L, Kozodoy P, Dahl A P, Nakagawa S, Larson M C, Mack M P, Strand T A, Coldren C W, Hegblom E, Penniman S K, Wipiejewski T and Coldren L A 2002 IEEE J. Sel. Top. Quantum Electron. 8 1349
[18] Jayaraman V, Chuang Z M and Coldren L A 1993 IEEE J. Quantum Electron. 29 1824
[19] Kozlovsky W J, Nabors C D and Byer R L 1988 IEEE J. Quantum Electron. 24 913
[1] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[2] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[3] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[4] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[5] High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers
Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来). Chin. Phys. B, 2019, 28(6): 064208.
[6] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[7] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[8] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[9] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[10] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[11] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[12] Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid
Lan-Lan Zhang(张兰兰), Wei Liu(刘伟), Ping Li(李萍), Xi Yang(杨曦), Xu Cao(曹旭). Chin. Phys. B, 2017, 26(6): 064209.
[13] Modes splitting in graphene-based double-barrier waveguides
Si-Pu You(有四普), Ying He(何英), Yan-Fang Yang(杨艳芳), Hui-Fang Zhang(张惠芳). Chin. Phys. B, 2017, 26(3): 030301.
[14] Hot-embossing fabrication of chalcogenide glasses rib waveguide for mid-infrared molecular sensing
Ting-Yang Yan(颜庭阳), Xiang Shen(沈祥), Rong-Ping Wang(王荣平), Guo-Xiang Wang(王国祥), Shi-Xun Dai(戴世勋), Tie-Feng Xu(徐铁峰), Qiu-Hua Nie(聂秋华). Chin. Phys. B, 2017, 26(2): 024213.
[15] All polymer asymmetric Mach-Zehnder interferometer waveguide sensor by imprinting bonding and laser polishing
Yu Liu(刘豫), Yue Sun(孙月), Yun-Ji Yi(衣云骥), Liang Tian(田亮), Yue Cao(曹悦), Chang-Ming Chen(陈长鸣), Xiao-Qiang Sun(孙小强), Da-Ming Zhang(张大明). Chin. Phys. B, 2017, 26(12): 124215.
No Suggested Reading articles found!