Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 073401    DOI: 10.1088/1674-1056/25/7/073401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Differential cross sections of positron—hydrogen collisions

Rong-Mei Yu(于荣梅)1, Chun-Ying Pu(濮春英)1, Xiao-Yu Huang(黄晓玉)1, Fu-Rong Yin(殷复荣)1, Xu-Yan Liu(刘旭焱)1, Li-Guang Jiao(焦利光)2, Ya-Jun Zhou(周雅君)3
1 College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China;
2 College of Physics, Jilin University, Changchun 130012, China;
3 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  

We make a detailed study on the angular differential cross sections of positron-hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed.

Keywords:  differential cross section      resonance      positron      hydrogen  
Received:  13 October 2015      Revised:  15 January 2016      Published:  05 July 2016
PACS:  34.80.Uv (Positron scattering)  
Fund: 

Project supported by the Nanyang Normal University Science Foundation of China (Grant No. ZX2013017) and the National Natural Science Foundation of China (Grant Nos. 11174066, 61306007, and U1304114).

Corresponding Authors:  Ya-Jun Zhou     E-mail:  zuolouzhoudx@163.com

Cite this article: 

Rong-Mei Yu(于荣梅), Chun-Ying Pu(濮春英), Xiao-Yu Huang(黄晓玉), Fu-Rong Yin(殷复荣), Xu-Yan Liu(刘旭焱), Li-Guang Jiao(焦利光), Ya-Jun Zhou(周雅君) Differential cross sections of positron—hydrogen collisions 2016 Chin. Phys. B 25 073401

[1] Charlton M and Humberston J M 2001 Positron Physics (Cambridge: Cambridge University Press)
[2] Ho Y K 2008 Nucl. Instrum. Meth. B 266 516
[3] Ho Y K 1992 Hyperfine Interactions 73 109
[4] Charlton M, Eades J, Horvath D, Hughes R J and Zimmermann C 1994 Phys. Rep. 241 65
[5] Mitroy J and Stelbovics A T 1994 Phys. Rev. Lett. 72 3495
[6] Mitroy J 1995 Phys. Rev. A 52 2859
[7] Doolen G D, Nuttall J and Wherry C 1978 Phys. Rev. Lett. 40 313
[8] Ho Y K and Yan Z C 2004 Phys. Rev. A 70 032716
[9] Yan Z C and Ho Y K 2008 Phys. Rev. A 77 030701
[10] Mitroy J and Stelbovics A T 1994 J. Phys. B 27 3257
[11] Seiler G J, Oberoi R S and Callaway J 1971 Phys. Rev. A 3 2006
[12] Mitroy J and Ratnavelu K 1995 J. Phys. B 28 287
[13] Lin C D 1995 Phys. Rep. 257 1
[14] Zhou Y and Lin C D 1995 J. Phys. B 28 4907
[15] Gien T T 1995 J. Phys. B 28 L313
[16] Gien T T 1996 J. Phys. B 29 2127
[17] Mandelshtam V A, Ravari T R and Taylor H S 1993 Phys. Rev. Lett. 70 1932
[18] Kar S and Ho Y K 2005 J. Phys. B 38 3299
[19] Roy U 2009 Indian J. Phys. 83 1637
[20] Varga K, Mitroy J, Mezei J Z and Kruppa A T 2008 Phys. Rev. A 77 044502
[21] Buhring W 1969 Z. Phys. 208 286
[22] Wadehra J M, Stein T S and Kauppila W E 1984 Phys. Rev. A 29 2912
[23] Mandal P, Kar S and Roy U 1998 Nucl. Instrum. Meth. B 143 32
[24] Ghoshal A and Mandal P 2005 Phys. Rev. A 72 042710
[25] Zhou Y, Ratnavelu K and McCarthy I E 2005 Phys. Rev. A 71 042703
[26] McCarthy I E and Stelbovics A T 1983 Phys. Rev. A 28 2693
[27] Stelbovics A T and Shang B 1992 Phys. Rev. A 46 3959
[28] Jiao L, Zhou Y and Wang Y 2010 Phys. Rev. A 81 042713
[29] Wang Y, Zhou Y, Jiao L and Ratnavelu K 2008 Chin. Phys. Lett. 25 2027
[30] Liu F, Cheng Y, Zhou Y and Jiao L 2011 Phys. Rev. A 83 032718
[31] Jiao L, Zhou Y, Cheng Y and Yu R 2012 Eur. Phys. J. D 66 48
[32] Yu R, Cheng Y, Jiao L and Zhou Y 2012 Chin. Phys. Lett. 29 053401
[33] Yu R, Zhou Y, Jiao L and Cheng Y 2012 Chin. Phys. B 21 013404
[34] Yu R, Cheng Y, Wang Y and Zhou Y 2012 Chin. Phys. B 21 053402
[1] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[2] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[3] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[4] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[5] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[6] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[7] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[8] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[9] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
[10] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[11] Resonance-enhanced two-photon ionization of hydrogen atom in intense laser field investigated by Bohmian-mechanics
Yang Song(宋阳), Shu Han(韩姝), Yu-Jun Yang(杨玉军), Fu-Ming Guo(郭福明), Su-Yu Li(李苏宇). Chin. Phys. B, 2020, 29(9): 093204.
[12] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[13] Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage
Linling Luo(罗林龄), Xiaoqiu Ye(叶小球), Guanghui Zhang(张光辉), Huaqin Kou(寇化秦), Renjin Xiong(熊仁金), Ge Sang(桑革), Ronghai Yu(于荣海), Dongliang Zhao(赵栋梁). Chin. Phys. B, 2020, 29(8): 088801.
[14] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[15] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
No Suggested Reading articles found!