Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 058102    DOI: 10.1088/1674-1056/25/5/058102

First-principles study of the structural, electronic, and magnetic properties of double perovskite Sr2FeReO6 containing various imperfections

Yan Zhang(张研)1, Li Duan(段理)1, Vincent Ji2, Ke-Wei Xu(徐可为)3
1. School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China;
2. ICMMO/SP2M, UMR CNRS 8182, Université Paris-Sud, 91405 Orsay Cédex, France;
3. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  The structural, electronic, and magnetic properties of double perovskite Sr2FeReO6 containing eight different imperfections of FeRe or ReFe antisites, Fe1-Re1 or Fe1-Re4 interchanges, VFe, VRe, VO or VSr vacancies have been studied by using the first-principles projector augmented wave (PAW) within generalized gradient approximation as well as taking into account the on-site Coulomb repulsive interaction (GGA+U). No obvious structural changes are observed for the imperfect Sr2FeReO6 containing FeRe or ReFe antisites, Fe1-Re1 or Fe1-Re4 interchanges, or VSr vacancy defects. However, the six (eight) nearest oxygen neighbors of the vacancy move away from (close to) VFe or VRe (VO) vacancies. The half-metallic (HM) character is maintained for the imperfect Sr2FeReO6 containing FeRe or ReFe antisites, Fe1-Re4 interchange, VFe, VO or VSr vacancies, while it vanishes when the Fe1-Re1 interchange or VRe vacancy is presented. So the Fe1-Re1 interchange and the VRe vacancy defects should be avoided to preserve the HM character of Sr2FeReO6 and thus usage in spintronic devices. In the FeRe or ReFe antisites, Fe1-Re1 or Fe1-Re4 interchanges cases, the spin moments of the Fe (Re) cations situated on Re (Fe) antisites are in an antiferromagnetic coupling with those of the Fe(Re) cations on the regular sites. In the VFe, VRe, VO, or VSr vacancies cases, a ferromagnetic coupling is obtained within each cation sublattice, while the two cation sublattices are coupled antiferromagnetically. The total magnetic moments μtot ( μB/f.u.) of the imperfect Sr2FeReO6 containing eight different defects decrease in the sequence of VSr vacancy (3.50), VRe vacancy (3.43), FeRe antisite (2.74), VO vacancy (2.64), VFe vacancy (2.51), ReFe antisite (2.29), Fe1-Re4 interchange (1.96), Fe1-Re1 interchange (1.87), and the mechanisms of the saturation magnetization reduction have been analyzed.
Keywords:  double perovskite      imperfections      electronic properties      magnetic properties     
Received:  15 December 2015      Published:  05 May 2016
PACS:  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  71.55.Jv (Disordered structures; amorphous and glassy solids)  
  71.23.-k (Electronic structure of disordered solids)  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51501017).
Corresponding Authors:  Yan Zhang     E-mail:

Cite this article: 

Yan Zhang(张研), Li Duan(段理), Vincent Ji, Ke-Wei Xu(徐可为) First-principles study of the structural, electronic, and magnetic properties of double perovskite Sr2FeReO6 containing various imperfections 2016 Chin. Phys. B 25 058102

[1] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
[2] Kobayashi K I, Kimura T, Tomioka Y, Sawada H, Terakura K and Tokura Y 1999 Phys. Rev. B 59 11159
[3] Rao C N R and Raveau B 1998 Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides (Singapore: World Scientific Publishers)
[4] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[5] Tomioka Y, Okuda T, Okimoto Y, Kumai R, Kobayashi K I and Tokura Y 2000 Phys. Rev. B 61 422
[6] Chmaissem O, Kruk R, Dabrowski B, Brown D E, Xiong X, Kolesnik S, Jorgensen J D and Kimball C W 2000 Phys. Rev. B 62 14197
[7] Navarro J, Frontera C, Balcells L, Martínez B and Fontcuberta J 2001 Phys. Rev. B 64 092411
[8] Moreno M S, Gayone J E, Abbate M, Caneiro A, Niebieskikwiat D, Sánchez R D, Siervo A de, Landers R and Zampieri G 2002 Physica B 320 43
[9] Jung A, Ksenofontov V, Reiman S, Therese H A, Kolb U, Felser C and Tremel W 2006 Phys. Rev. B 73 144414
[10] Jung A, Bonn I, Ksenofontov V, Panthöfer M, Reiman S, Felser C and Tremel W 2007 Phys. Rev. B 75 184409
[11] Ohno K, Kato H, Nishioka T and Matsumura M 2007 J. Magn. Magn. Mater. 310 e666
[12] Hu Y C, Ge J J, Ji Q, Jiang Z S, Wu X S and Cheng G F 2010 Mater. Chem. Phys. 124 274
[13] Pan Y W, Zhu P W and Wang X 2015 Chin. Phys. B 24 017503
[14] Sarma D D, Mahadevan P, Saha-Dasgupta T, Ray S and Kumar A 2000 Phys. Rev. Lett. 85 2549
[15] Moritomo Y, Xu Sh, Akimoto T, Machida A, Hamada N, Ohoyama K, Nishibori E, Takata M and Sakata M 2000 Phys. Rev. B 62 14224
[16] Fang Z, Terakura K and Kanamori J 2001 Phys. Rev. B 63 180407
[17] Wu H 2001 Phys. Rev. B 64 125126
[18] Solovyev I V 2002 Phys. Rev. B 65 144446
[19] Jeng H T and Guo G Y 2003 Phys. Rev. B 67 094438
[20] Saha-Dasgupta T and Sarma D D 2001 Phys. Rev. B 64 064408
[21] Ogale A S, Ogale S B, Ramesh R and Venkatesan T 1999 Appl. Phys. Lett. 75 537
[22] Ray S, Kumar A, Sarma D D, Cimino R, Turchini S, Zennaro S and Zema N 2001 Phys. Rev. Lett. 87 097204
[23] Munoz-García A B, Pavone M and Carter E A 2011 Chem. Mater. 23 4525
[24] Kircheisen R and Töpfer J 2012 J. Solid State Chem. 185 76
[25] Meneghini C, Ray S, Liscio F, Bardelli F, Mobilio S and Sarma D D 2009 Phys. Rev. Lett. 103 046403
[26] Balcells L, Navarro J, Bibes M, Roig A, Martinez B and Fontcuberta J 2001 Appl. Phys. Lett. 78 781
[27] Zhu X F, Li Q F and Chen L F 2007 Solid State Commun. 144 230
[28] Stoeffler D and Colis S 2005 J. Magn. Magn. Mater. 290-291 400
[29] Stoeffler D and Colis S 2006 Mater. Sci. Eng. B 126 133
[30] Stoeffler D and Etz C 2006 J. Phys.: Condens. Matter 18 11291
[31] Frontera C and Fontcuberta J 2004 Phys. Rev. B 69 014406
[32] Retuerto M, Martínez-Lope M J, García-Hernández M and Alonso J A 2009 Mater. Res. Bull. 44 1261
[33] Blanco J J, Insausti M, Lezama L, Chapman J P, Gil de Muro I and Rojo T 2004 J. Solid State Chem. 177 2749
[34] Blasco J, Rodríguez-Velamazán J A, Ritter C, Sesé J, Stankiewicz J and Herrero-Martín J 2009 Solid State Sci. 11 1535
[35] Li Q F, Zhu X F and Chen L F 2008 Phys. Lett. A 372 2911
[36] Li Q F, Wang L and Su J L 2011 Mod. Phys. Lett. B 25 2259
[37] Wang J, Zhang J M, Wang S F and Xu K W 2013 J. Magn. Magn. Mater. 329 30
[38] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[39] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Saitoh T, Nakatake M, Kakizaki A, Nakajima H, Morimoto O, Xu Sh, Moritomo Y, Hamada N and Aiura Y 2002 Phys. Rev. B 66 035112
[45] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[46] Shannon R D 1976 Acta Cryst. A 32 751
[47] Zhang Y and Ji V 2012 Physica B 407 912
[1] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[2] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[3] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[4] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[5] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[6] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[7] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[8] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[9] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[10] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), Su-Huai Wei(魏苏淮). Chin. Phys. B, 2020, 29(10): 108401.
[11] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(10): 107504.
[12] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[13] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[14] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[15] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
No Suggested Reading articles found!