Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 047501    DOI: 10.1088/1674-1056/25/4/047501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-xMgxFe2O4 nanoparticle ferrites

R M Rosnan, Z Othaman, R Hussin, Ali A Ati, Alireza Samavati, Shadab Dabagh, Samad Zare
Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
Abstract  In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Co0.5Ni0.5-xMgxFe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ~32 nm to ~36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ~57.35 emu/g to ~61.49 emu/g and ~603.26 Oe to ~684.11 Oe (1 Oe=79.5775 A·m-1), respectively. The higher values of magnetization Ms and Mr suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices.
Keywords:  co-precipitation      magnetic materials      spinel ferrite      magnetic properties  
Received:  01 October 2015      Revised:  16 December 2015      Accepted manuscript online: 
PACS:  75.47.Lx (Magnetic oxides)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  75.75.-c (Magnetic properties of nanostructures)  
  81.20.Fw (Sol-gel processing, precipitation)  
Fund: Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).
Corresponding Authors:  R M Rosnan     E-mail:  rizuanmr@gmail.com

Cite this article: 

R M Rosnan, Z Othaman, R Hussin, Ali A Ati, Alireza Samavati, Shadab Dabagh, Samad Zare Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-xMgxFe2O4 nanoparticle ferrites 2016 Chin. Phys. B 25 047501

[1] Šepelák V, Baabe D, Mienert D, Schultze D, Krumeich F, Litterst F J and Becker K D 2003 J. Magn. Magn. Mater. 257 377
[2] Ramana C V, Kolekar Y D, Kamala Bharathi K, Sinha B and Ghosh K 2013 J. Appl. Phys. 114 183907
[3] Karanjkar M M, Tarwal N L, Vaigankar A S and Patil P S 2013 Ceram. Int. 39 1757
[4] Tan M, Köseoğlu Y, Alan F and Şentürk E 2011 J. Alloys Compd. 509 9399
[5] Patange S, Shirsath S E, Jangam Lohar G K, Jadhav S S and Jadhav K 2011 J. Appl. Phys. 109 053909
[6] Islam M U, Abbas T, Niazi S B, Ahmad Z, Sabeen S and Chaudhry M A 2004 Solid State Commun. 130 353
[7] He X M, Yan S M, Li Z W, Zhang X, Song X Y, Qiao W, Zhong W and Du Y W 2015 Chin. Phys. B 24 127502
[8] Ati A A, Othaman Z and Samavati A 2013 J. Mol. Struct. 1052 177
[9] Li L Z, Tu X Q, Wang R and Peng L 2015 J. Magn. Magn. Mater. 381 328
[10] Joshi S, Kumar S M, Chhoker S, Srivastava G, Jewariya M and Singh V N 2014 J. Mol. Struct. 1076 55
[11] Zhu X F and Chen L F 2011 J. Magn. Magn. Mater. 323 3138
[12] Balaji S, Selvan R K, Berchmans L J, Angappan S, Subramanian K and Augustin C 2005 Mater. Sci. Eng. B 119 119
[13] Rahimi M, Kameli P, Ranjbar M, Hajihashemi H and Salamati H 2013 J. Mater. Sci. 48 2969
[14] Li L Z, Yu Z, Lan Z W, Sun K and Wu C J 2014 Ceram. Int. 40 13917
[15] Wang L, Lu M, Liu Y, Li J, Liu M and Li H 2015 Ceram. Int. 41 4176
[16] Deraz N M 2012 Ceram. Int. 38 511
[17] Sontu U B, Yelasani V and Musugu V R R 2015 J. Magn. Magn. Mater. 374 376
[18] Tsay C Y, Lin Y H and Jen S U 2015 Ceram. Int. 41 5531
[19] Puli V S, Adireddy S and Ramana C V 2015 J. Alloys Compd. 644 470
[20] Shang Z F, Qi W H, Ji D H, Xu J, Tang G D, Zhang X Y, Li Z Z and Lang L L 2014 Chin. Phys. B 23 107503
[21] Aghav P S, Dhage V N, Mane M L, Shengule D R, Dorik R G and Jadhav K M 2011 Physica B: Condens. Matter 406 4350
[22] Kumari S, Kumar V, Kumar P, Kar M and Kumar L 2015 Adv. Powder Technol. 26 213
[23] Sundararajan M, Kennedy L J, Aruldoss U, Khadeer S, Vijaya J J and Dunn S 2015 Mater. Sci. Semicond. Process. 40 1
[24] Sekhar B C, Rao G S N, Caltun O F, Lakshmi B D, Rao B P and Rao P S V S 2016 J. Magn. Magn. Mater. 398 59
[25] Reddy C V, Byon C, Narendra Baskar B D, Srinivas G, Shim J and Prabhakar Vattikuti S V 2015 Superlattices Microstruct. 82 165
[26] Akther Hossain A K M, Seki M, Kawai T and Tabata H 2004 J. Appl. Phys. 96 1273
[27] John Berchmans L, Kalai Selvan R, Selva Kumar P and Augustin C 2004 J. Magn. Magn. Mater. 279 103
[28] Mirzaee S, Farjami Shayesteh S and Mahdavifar S 2014 Polymer 55 3713
[29] Raut A V, Barkule R S, Shengule D R, Jadhav K M 2014 J. Magn. Magn. Mater. 358-359 87
[30] Raju K, Venkataiah G and Yoon D H 2014 Ceram. Int. 40 9337
[31] Rezlescu N, Rezlescu E, Pasnicu C and Craus M 1994 J. Phys: Condens. Mater. 6 5707
[32] Naeem M, Shah N A, Gul I H and Maqsood A 2009 J. Alloys. Compd. 487 739
[33] Denton A R and Ashcroft N W 1991 Phys. Rev. A 43 3161
[34] Reshak A H 2014 J. Alloys Compd. 589 213
[35] Waldron R D 1955 Phys. Rev. 99 1727
[36] Kumar V, Rana A, Kumar N and Pant R P 2011 Int. J. Appl. Ceram. Technol. 8 120
[37] Priyadharsini P, Pradeep A, Rao P S and Chandrasekaran G 2009 Mater. Chem. Phys. 116 207
[38] Pradeep A, Priyadharsini P and Chandrasekaran G 2008 J. Magn. Magn. Mater. 320 2774
[39] Gabal M A 2009 J. Magn. Magn. Mater. 321 3144
[40] Roy P K and Bera J 2006 J. Magn. Magn. Mater. 298 38
[41] Gabal M A, El-Shishtawy R M and Al Angari Y M 2012 J. Magn. Magn. Mater. 324 2258
[42] Nath S K, Rahman M M, Sikder S, Hakim M and Hoque S M 2013 ARPN J. Sci. Tech. 3 106
[43] Yafet Y and Kittel C 1952 Phys. Rev. 87 290
[44] Bobade D H, Rathod S M and Mane M L 2012 Physica B: Condens. Matter 407 3700
[45] Panneer Muthuselvam I and Bhowmik R N 2010 J. Magn. Magn. Mater. 322 767
[46] Iqbal M J, Ashiq M N, Hernandez-Gomez P and Munoz J M 2007 Scripta Mater. 57 1093
[1] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[2] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[3] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[4] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[5] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[6] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[7] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[8] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[9] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[10] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[11] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[12] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[13] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[14] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[15] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
No Suggested Reading articles found!