Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 030503    DOI: 10.1088/1674-1056/25/3/030503
GENERAL Prev   Next  

Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

Hailong Zhang(张海龙)1,2, Enrong Wang(王恩荣)2, Fuhong Min(闵富红)2, Ning Zhang(张宁)1
1. Magneto-electronic Laboratory, School of Physics and Technology, Nanjing Normal University, Nanjing 210046, China;
2. Vibration Control Laboratory, School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China
Abstract  The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system.
Keywords:  magneto-rheological damper      hysteresis      Bouc-Wen model      chaotic motions  
Received:  10 June 2015      Revised:  26 October 2015      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  45.90.+t  
  05.45.Pq (Numerical simulations of chaotic systems)  
  46.15.-x (Computational methods in continuum mechanics)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 51475246, 51277098, and 51075215), the Research Innovation Program for College Graduates of Jiangsu Province China (Grant No. KYLX150725), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131402).
Corresponding Authors:  Ning Zhang     E-mail:  zhangning@njnu.edu.cn

Cite this article: 

Hailong Zhang(张海龙), Enrong Wang(王恩荣), Fuhong Min(闵富红), Ning Zhang(张宁) Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation 2016 Chin. Phys. B 25 030503

[1] Park B J, Fang F F and Choi H J 2010 Soft Mater. 6 5246
[2] Vicente J D, Klingenberg D J and Hidalgo-Alvarez R 2011 Soft Mater. 7 3701
[3] Mclaughlin G, Hu W and Wereley N M 2014 J. App. Phys. 115 17B532
[4] Arash M K, Mehdi M and Sayad H 2014 J. Vib. Control 20 2221
[5] Hiemenz G J, Gregory J, Hu W and Wereley N M 2008 J. Aircr. 45 945
[6] Dong X M, Yu M, Liao C R and Chen W M 2010 Nonlinear Dyn. 59 433
[7] Khiavi A M, Mirzaei M and Hajimohammadi S 2014 J. Vib. Control 20 2221
[8] Shin Y J, You W H, Hur H M and Park J H 2014 Smart Mater. Struct. 23 095023
[9] Awrejcewicz J and Dzyubak L P 2005 J. Sound Vib. 284 513
[10] Baek S K and Moon H T 2006 Phys. Lett. A 352 89
[11] Walter L and Fabrizio V 2003 Nonlinear Dyn. 32 235
[12] Lamarque C H, Savadkoohi A T and Naudan M 2013 Eur. Phys. J. Special Topics 222 1617
[13] Nicola C, Walter L and Fabrizio V 2014 J. Sound Vib. 333 1302
[14] Naik R D and Singru P M 2009 Mech. Res. Commun. 36 957
[15] Luo A C J and Rajendran A 2007 J. Vib. Control 13 687
[16] Krzysztof K, Andrzej M, Danuta S and Jerzy W 2014 Meccanica 49 1887
[17] Yan S, Dowell E H and Lin B 2014 Nonlinear Dyn. 78 1435
[18] Litak G, Borowiec M, Michael I F and Kazimierz S 2008 Commun. Nonlinear Sci. 13 1373
[19] Aurelio D, Ion S and Ramin S 2014 J. Intel. Mat. Syst. Str. 25 967
[20] Wang W J, Ying L and Wang E R 2009 J. Mech. Eng. 45 100 (in Chinese)
[21] Zhang H L, Wang E R and Zhang N, et al. 2015 Chin. J. Mech. Eng. 28 63
[22] Zhang H L, Wang E R and Min F H, et al. 2013 Chin. J. Mech. Eng. 26 498
[23] Wang E R, Ying L, Wang W J, et al. 2008 Chin. J. Mech. Eng. 21 13
[24] Su M B and Rong H W 2011 Chin. Phys. B 20 060501
[25] Farshidianfar A and Saghafi A 2014 Shock Vib. 2014 809739
[26] Wolf A, Swift J B, Swinney H L, et al. 1985 Physica D 16 285
[27] Tian R L, Yang X W, Cao Q J and Wu Q L 2012 Chin. Phys. B 21 020503
[28] Cencini M, Falcion M, Olbrich E, Kantz H and Vulpiani A 2000 Phys. Rev. E 62 427
[1] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[2] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[3] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[4] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[5] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[6] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[7] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[8] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[9] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[10] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[11] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[12] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[13] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[14] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
[15] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
No Suggested Reading articles found!