Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 128101    DOI: 10.1088/1674-1056/25/12/128101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Nanoscale spatial phase modulation of GaAs growth in V-grooved trenches on Si (001) substrate

Shi-Yan Li(李士颜), Xu-Liang Zhou(周旭亮), Xiang-Ting Kong(孔祥挺), Meng-Ke Li(李梦珂), Jun-Ping Mi(米俊萍), Meng-Qi Wang(王梦琦), Jiao-Qing Pan(潘教青)
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

This letter reports the nanoscale spatial phase modulation of GaAs growth in V-grooved trenches fabricated on a Si (001) substrate by metal-organic vapor-phase epitaxy. Two hexagonal GaAs regions with high density of stacking faults parallel to Si {111} surfaces are observed. A strain-relieved and defect-free cubic phase GaAs was achieved above these highly defective regions. High-resolution transmission electron microscopy and fast Fourier transforms analysis were performed to characterize these regions of GaAs/Si interface. We also discussed the strain relaxation mechanism and phase structure modulation of GaAs selectively grown on this artificially manipulated surface.

Keywords:  phase modulation      GaAs      grooves      Si     
Received:  20 December 2015      Published:  05 December 2016
PACS:  81.05.Ea (III-V semiconductors)  
  81.05.Cy (Elemental semiconductors)  
  64.75.Qr (Phase separation and segregation in semiconductors)  
Fund: 

Project supported by the National Science and Technology Major Project of Science and Technology of China (Grant No. 2011ZX02708) and the National Natural Science Foundation of China (Grant No. 61504137).

Corresponding Authors:  Jiao-Qing Pan     E-mail:  jqpan@semi.ac.cn

Cite this article: 

Shi-Yan Li(李士颜), Xu-Liang Zhou(周旭亮), Xiang-Ting Kong(孔祥挺), Meng-Ke Li(李梦珂), Jun-Ping Mi(米俊萍), Meng-Qi Wang(王梦琦), Jiao-Qing Pan(潘教青) Nanoscale spatial phase modulation of GaAs growth in V-grooved trenches on Si (001) substrate 2016 Chin. Phys. B 25 128101

[1] Zhou X, Tang C W, Li Q and Lau K M 2012 Phys. Status Solidi A 209 1380
[2] Li J Z, Bai J, Park J S, Adekore B, Fox K, Carroll M and Shellenbarger Z 2007 Appl. Phys. Let. 91 021114
[3] Ghosh R N, Griffing B and Ballantyne J M 1986 Appl. Phys. Lett. 48 370
[4] Chen H, Zhang Z, Huang B, Mao L and Zhang Z 2015 J. Semicond. 36 121001
[5] Xi X W, Chai C C, Liu Y, Yang Y T, Fan Q Y and Shi C L 2016 Chin. Phys. B 25 088504
[6] Wu L S, Zhao Y, Shen H C, Zhang Y T and Chen T S 2016 Chin. Phys. B 25 067306
[7] Zhou X, Pan J, Liang R, Wang J and Wang W 2014 J. Semicond. 35 073002
[8] Krost A, Schnabel R F, Heinrichsdorff F, Rossow U, Bimberg D and Cerva H 1994 J. Cryst. Growth 145 314
[9] Krost A, Heinrichsdorff F and Bimberg D 1994 Appl. Phys. Lett. 64 769
[10] Paladugu M, Merckling C, Loo R and Richard O 2012 Cryst. Growth Des. 12 4696
[11] Wang G, Leys M, Loo R and Richard O 2014 Appl. Phys. Lett. 105 062101
[12] Li Shi Y, Zhou X L, Kong X T, Li M K, Mi J P, Bian J, Wang W and Pan J Q 2015 Chin. Phys. Lett. 32 028101
[13] Lee S C, Sun X Y, Hersee S D and Brueck S R J 2004 Appl. Phys. Lett. 8 2079
[14] Lee S C, Pattada B and Hersee S D 2005 J. Quantum Electron. 41 596
[15] Zhao D, Zhao D, Jiang D, Liu Z and Zhu J 2015 J. Semicond. 36 063003
[16] Li S, Zhou X, Kong X, Li M and Mi J 2015 Appl. Phys. Lett. 108 021902
[17] Bordel D, Guimard D, Rajesh M, Nishioka M and Arakawa Y 2010 Appl. Phys. Lett. 96 043101
[18] Xu Q, Hsu J W P, Carlin J A, Sieg R M, Boeckl J J and Ringel S A 1999 Appl. Phys. Lett. 75 2111
[19] Yeh C Y, Lu Z W, Froyen S and Zunger A 1992 Phys. Rev. B 46 10086
[20] Krost A, Heinrichsdorff F, Bimberg D and Cerva H 1994 Appl. Phys. Lett. 64 769
[21] Dynna M and Marty A 1998 Acta Mater. 46 1087
[1] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[2] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[3] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[4] Relative phase-dependent two-electron emission dynamics with two-color circularly polarized laser fields
Tong-Tong Xu(徐彤彤), Lian-Lian Zhang(张莲莲), Zhao Jin(金钊), Wei-Jiang Gong(公卫江). Chin. Phys. B, 2020, 29(9): 093202.
[5] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[6] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[7] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[8] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[9] Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique
Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧). Chin. Phys. B, 2020, 29(9): 090701.
[10] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[11] Active Brownian particles simulated in molecular dynamics
Liya Wang(王丽雅), Xinpeng Xu(徐新鹏), Zhigang Li(李志刚), Tiezheng Qian(钱铁铮). Chin. Phys. B, 2020, 29(9): 090501.
[12] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
[13] Acetone sensors for non-invasive diagnosis of diabetes based on metal-oxide-semiconductor materials
Yujie Li(李育洁), Min Zhang(张敏), Haiming Zhang(张海明). Chin. Phys. B, 2020, 29(9): 090702.
[14] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[15] Charge transfer in low-energy collisions ofBe3+ and B4+ ions with He
Kun Wang(王堃), Yi-Zhi Qu(屈一至), Chun-Hua Liu(刘春华), Ling Liu(刘玲), Yong Wu(吴勇), H P Liebermann, Robert J. Buenker. Chin. Phys. B, 2020, 29(9): 093401.
No Suggested Reading articles found!