Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 126201    DOI: 10.1088/1674-1056/25/12/126201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strain-rate-induced bcc-to-hcp phase transformation of Fe nanowires

Hongxian Xie(谢红献)1,2,3,4, Tao Yu(于涛)2, Wei Fang(方伟)3,4, Fuxing Yin(殷福星)3,4, Dil Faraz Khan5
1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China;
2. Central Iron and Steel Research Institute, Beijing 100081, China;
3. Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin 300132, China;
4. Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300132, China;
5. Department of Physics, University of Science and Technology Bannu, Bannu 28100, Pakistan
Abstract  

Using molecular dynamics simulation method, the plastic deformation mechanism of Fe nanowires is studied by applying uniaxial tension along the[110] direction. The simulation result shows that the bcc-to-hcp martensitic phase transformation mechanism controls the plastic deformation of the nanowires at high strain rate or low temperature; however, the plastic deformation mechanism will transform into a dislocation nucleation mechanism at low strain rate and higher temperature. Furthermore, the underlying cause of why the bcc-to-hcp martensitic phase transition mechanism is related to high strain rate and low temperature is also carefully studied. Based on the present study, a strain rate-temperature plastic deformation map for Fe nanowires has been proposed.

Keywords:  Fe nanowires      atomistic simulations      phase transformation     
Received:  01 March 2016      Published:  05 December 2016
PACS:  62.23.Hj (Nanowires)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  64.70.K-  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51571082) and China Postdoctoral Science Foundation (Grant No. 2015M580191).

Corresponding Authors:  Hongxian Xie     E-mail:  hongxianxie@163.com

Cite this article: 

Hongxian Xie(谢红献), Tao Yu(于涛), Wei Fang(方伟), Fuxing Yin(殷福星), Dil Faraz Khan Strain-rate-induced bcc-to-hcp phase transformation of Fe nanowires 2016 Chin. Phys. B 25 126201

[1] Tateno S, Hirose K, Ohishi Y and Tatsumi Y 2010 Science 330 359
[2] Stixrude L 2012 Phys. Rev. Lett. 108 055505
[3] Ping Y, Coppari F, Hicks D G and Yaakob B 2013 Phys. Rev. Lett. 111 065501
[4] Anzellini S, Dewaele A, Mezouar M and Loubeyre P 2013 Science 340 464
[5] Bancroft D, Peterson E L and Minshall S 1956 J. Appl. Phys. 27 291
[6] Kadau K, Germann T C, Lomdahl P S and Holian B L 2002 Science 296 1681
[7] Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A and Holian B L 2007 Phys. Rev. Lett. 98 135701
[8] Pang W W, Zhang P, Zhang G C, Xu A G and Zhao X G 2014 Sci. Rep. 4 3628
[9] Pang W W, Zhang P, Zhang G C, Xu A G and Zhao X G 2014 Sci. Rep. 4 5273
[10] Wang S J, Sui M L, Chen Y T, Lu Q H, Ma E, Pei X Y, Li Q Z and Hu H B 2013 Sci. Rep. 3 1086
[11] Quan J and Yang X Y 2015 Acta Phys. Sin. 64 116201 (in Chinese)
[12] Xie S F, Chen S D and Soh A K 2011 Chin. Phys. Lett. 28 066201
[13] Liao H, Ruan S C, Li L, et al. 2011 Chin. Phys. Lett. 28 106104
[14] Diao J, Gall K and Dunn M L 2004 Nano Lett. 4 1863
[15] Rabkin E, Nam H S and Srolovitz D J 2007 Acta Mater. 55 2085
[16] Zhu T, Li J, Samanta A, Leach A and Gall K 2008 Phys. Rev. Lett. 100 025502
[17] Ikeda H, Qi Y, C? agin T, Samwer K, Johnson W L and Goddard W A 1999 Phys. Rev. Lett. 82 2900
[18] Branício P S and Rino J P 2000 Phys. Rev. B 62 16950
[19] Chen M W, McCauley J W and Hemker K J 2003 Science 299 1563
[20] Xiong Y, Kang K, Bae G, Yoon S and Lee C 2008 Appl. Phys. Lett. 92 194101
[21] Luo X T, Yang G J, Li C J and Kondoh K 2011 Scr. Mater. 6 5581
[22] Xie H X, Yin F X, Yu T, Lu G H and Zhang Y G 2015 Acta Mater. 85 191
[23] Plimpton S 1995 J. Comput. Phys. 117 1
[24] Plimpton S 2007 Large-scale atomic/molecular massively parallel simulator (Sandia National Laboratories)
[25] Zhou M 2003 Proc. R. Soc. Lond. A 459 2347
[26] Tschopp M A and McDowell D L 2007 Appl. Phys. Lett. 90 121916
[27] Tschopp M A, Spearot D E and McDowell D L 2007 Model. Simul. Mater. Sci. Eng. 15 693
[28] Tschopp M A and McDowell D L 2008 J. Mech. Phys. Solids 56 1806
[29] Spearot D E, Tschopp M A and McDowell D L 2009 Scr. Mater. 60 675
[30] Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y and Asta M 2003 Philos. Mag. 83 3977
[31] Malerba L 2010 J. Nucl. Mater. 406 19
[32] Cleveland C L, Luedtke W D and Landman U 1999 Phys. Rev. B 60 5065
[33] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[34] Baughman R H 1998 Nature 392 362
[35] Xie H X, Yu T and Tang C C 2013 Modell. Simul. Mater. Sci. Eng. 210 55008
[36] Xie H X, Yin F X and Yu T 2014 Appl. Phys. Lett. 104 031911
[37] Hirth J P and Lothe J 1982 Theory of Dislocations (New York:Wiley)
[38] Rösler J, Harders H and Bäker M 2006 Mechanical Behaviourof Engineering Materials, German edn. (published by Teubner VerlagWiesbaden)
[1] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[2] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽)1, Wen-Hao Jiang(姜文昊)1, Hui Yang(杨慧)1, Zhao-Jun Mo(莫兆军)1,† Jun Shen(沈俊)2,‡, and Lan Li(李岚) 1. Chin. Phys. B, 2020, 29(12): 127501.
[3] High-pressure-induced phase transition in cinchomeronic acid polycrystalline form-I
Ting-Ting Yan(颜婷婷), Dong-Yang Xi(喜冬阳), Jun-Hai Wang(王俊海), Xu-Feng Fan(樊旭峰), Ye Wan(万晔), Li-Xiu Zhang(张丽秀), Kai Wang(王凯). Chin. Phys. B, 2019, 28(1): 016104.
[4] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
[5] Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy
Li Feng(冯力), Beibei Jia(贾北北), Changsheng Zhu(朱昶胜), Guosheng An(安国升), Rongzhen Xiao(肖荣振), Xiaojing Feng(冯小静). Chin. Phys. B, 2017, 26(8): 080504.
[6] Low-temperature phase transformation of CZTS thin films
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超). Chin. Phys. B, 2017, 26(4): 046402.
[7] Cyclic stress induced phase transformation insuper-bainitic microstructure
Wencui Xiu(修文翠), Ying Han(韩英), Cheng Liu(刘澄), Hua Wu(吴化), Yunxu Liu(刘云旭). Chin. Phys. B, 2017, 26(3): 038101.
[8] Measurement of iron characteristics under ramp compression
H G Wei(魏会冈), E Brambrink, N Amadou, A Benuzzi-Mounaix, A Ravasio, G Morard, F Guyot, T de Rességuier, N Ozaki, K Miyanishi, G Zhao(赵刚), M Koenig. Chin. Phys. B, 2017, 26(11): 115205.
[9] Observation of giant magnetocaloric effect under low magnetic fields in EuTi1-xCoxO3
Qi-Lei Sun(孙启磊), Zhao-Jun Mo(莫兆军), Jun Shen(沈俊), Yu-Jin Li(黎玉进), Lan Li(李兰), Jun-Kai Zhang(张君凯), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2017, 26(11): 117501.
[10] A new family of sp3-hybridized carbon phases
Ning Xu(徐宁), Jian-Fu Li(李建福), Bo-Long Huang(黄勃龙), Bao-Lin Wang(王保林). Chin. Phys. B, 2016, 25(1): 016103.
[11] Magnetic properties and magnetocaloric effects in Er1-xGdxCoAl intermetallic compounds
Gao Xin-Qiang, Mo Zhao-Jun, Shen Jun, Li Ke, Dai Wei, Wu Jian-Feng, Tang Cheng-Chun. Chin. Phys. B, 2015, 24(9): 097502.
[12] Low-temperature phase transformation from nanotube to sp3 superhard carbon phase
Xu Ning, Li Jian-Fu, Huang Bo-Long, Wang Bao-Lin. Chin. Phys. B, 2015, 24(6): 066102.
[13] Magnetic properties and magnetocaloric effects in HoPd intermetallic
Mo Zhao-Jun, Shen Jun, Gao Xin-Qiang, Liu Yao, Wu Jian-Feng, Shen Bao-Gen, Sun Ji-Rong. Chin. Phys. B, 2015, 24(3): 037503.
[14] Post-annealing effect on the structural and mechanical properties of multiphase zirconia films deposited by a plasma focus device
I. A. Khan, R. S. Rawat, R. Ahmad, M. A. K. Shahid. Chin. Phys. B, 2013, 22(12): 127306.
[15] Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study
Shao Yu-Fei, Yang Xin, Zhao Xing, Wang Shao-Qing. Chin. Phys. B, 2012, 21(9): 093104.
No Suggested Reading articles found!