Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117505    DOI: 10.1088/1674-1056/25/11/117505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Lumped modeling with circuit elements for nonreciprocal magnetoelectric tunable band-pass filter

Xiao-Hong Li(李小红), Hao-Miao Zhou(周浩淼), Qiu-shi Zhang(张秋实), Wen-Wen Hu(胡文文)
College of Information Engineering, China Jiliang University, Hangzhou 310018, China
Abstract  This paper presents a lumped equivalent circuit model of the nonreciprocal magnetoelectric tunable microwave band-pass filter. The reciprocal coupled-line circuit is based on the converse magnetoelectric effect of magnetoelectric composites, includes the electrical tunable equivalent factor of the piezoelectric layer, and is established by the introduced lumped elements, such as radiation capacitance, radiation inductance, and coupling inductance, according to the transmission characteristics of the electromagnetic wave and magnetostatic wave in an inverted-L-shaped microstrip line and ferrite slab. The nonreciprocal transmission property of the filter is described by the introduced T-shaped circuit containing controlled sources. Finally, the lumped equivalent circuit of a nonreciprocal magnetoelectric tunable microwave band-pass filter is given and the lumped parameters are also expressed. When the deviation angles of the ferrite slab are respectively 0° and 45°, the corresponding magnetoelectric devices are respectively a reciprocal device and a nonreciprocal device. The curves of S parameter obtained by the lumped equivalent circuit model and electromagnetic simulation are in good agreement with the experimental results. When the deviation angle is between 0° and 45°, the maximum value of the S parameter predicted by the lumped equivalent circuit model is in good agreement with the experimental result. The comparison results of the paper show that the lumped equivalent circuit model is valid. Further, the effect of some key material parameters on the performance of devices is predicted by the lumped equivalent circuit model. The research can provide the theoretical basis for the design and application of nonreciprocal magnetoelectric tunable devices.
Keywords:  nonreciprocal microwave devices      magnetoelectric tunable microwave devices      lumped equivalent circuit  
Received:  17 May 2016      Revised:  09 August 2016      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  84.40.Dc (Microwave circuits)  
  85.80.Jm (Magnetoelectric devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172285, 11472259, and 11302217) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR13A020002).
Corresponding Authors:  Hao-Miao Zhou     E-mail:  zhouhm@cjlu.edu.cn

Cite this article: 

Xiao-Hong Li(李小红), Hao-Miao Zhou(周浩淼), Qiu-shi Zhang(张秋实), Wen-Wen Hu(胡文文) Lumped modeling with circuit elements for nonreciprocal magnetoelectric tunable band-pass filter 2016 Chin. Phys. B 25 117505

[1] Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
[2] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[3] Ma J, Hu J M, Li Z and Nan C W 2011 Adv. Mater. 23 1062
[4] Zhou H M, Li C, Xuan L M, Wei J and Zhao J X 2011 Smart Mater. Struct. 20 035001
[5] Zhou H M, Ou X W, Xiao Y, Qu S X and Wu H P 2013 Smart Mater. Struct. 22 035018
[6] Zhou H M and Cui X L 2014 J. Appl. Phys. 115 083905
[7] Zhou H M and Cui X L 2014 Smart Mater. Struct. 23 105014
[8] Liu M and Sun N X 2014 Phil. Trans. R. Soc. A 372 20120439
[9] Liu M, Lou J, Li S D and Sun N X 2011 Adv. Funct. Mater. 21 2593
[10] Liu M, Howe B M, Grazulis L, Mahalingam K, Nan T X, Sun N X and Brown G J 2013 Adv. Mater. 25 4886
[11] Liu M, Zhou Z Y, Nan T X, Howe B M, Brown G J and Sun N X 2013 Adv. Mater. 25 1435
[12] Zhou Z Y, Peng B, Zhu M M and Liu M 2016 J. Adv. Dielectrics 6 1630005
[13] Zhou H M, Chen Q and Deng J H 2014 Chin. Phys. B 23 047502
[14] Yang X, Zhou Z, Nan T, Gao Y, Yang G M, Liu M and Sun N X 2016 J. Mater. Chem. C 4 234
[15] Ciomaga C E, Avadanei O G, Dumitru I, Airimioaei M, Tascu S, Tufescu F and Mitoseriu L 2016 J. Phys. D:Appl. Phys. 49 125002
[16] Lin H, Gao Y, Wang X J, Nan T X, Liu M, Lou J, Yang G M, Zhou Z Y, Yang X, Wu J, Li M, Hu Z Q and Sun N X 2016 IEEE Trans. Magn. 52 4002208
[17] Yang X, Gao Y, Wu J, Beguhn S, Nan T, Zhou Z, Liu M and Sun N X 2013 IEEE Trans. Magn. 49 5485
[18] Tatarenko A S, Gheevarughese V, Srinivasan G, Antonenkov O V and Bichurin M I 2010 J. Electroceram. 24 5
[19] Ustinov A B, Tiberkevich V S, Srinivasan G and Slavin A N 2006 J. Appl. Phys. 100 093905
[20] Ustinov A B, Srinivasan G and Fetisov Y K 2008 J. Appl. Phys. 103 063901
[21] Ustinov A B, Srinivasan G and Kalinikos B A 2007 Appl. Phys. Lett. 90 031913
[22] Tatarenko A S and Srinivasan G 2011 Microw. Opt. Technol. Lett. 53 261
[23] Yang G M and Sun N X 2014 IEEE Trans. Magn. 50 4005004
[24] Yang X, Wu J, Gao Y, Nan T X, Zhou Z Y, Beguhn S, Liu M and Sun N X 2013 IEEE Trans. Magn. 49 3882
[25] Petrov R V, Tatarenko A S, Pandey S and Srinivasan G 2008 Electron. Lett. 44 506
[26] Yang G M, Xing X, Daigle A, Liu M, Obi O, Wang J W, Naishadham K and Sun N X 2008 IEEE Trans. Magn. 44 3091
[27] Yang G M, Xing X, Daigle A, Obi O, Liu M, Lou J, Stoute S, Naishadham K and Sun N X 2010 IEEE Trans. Antennas Prop. 58 648
[28] Queck C K and Davis L E 2002 IEEE Trans. Microw. Theory Tech. 50 2910
[29] Adam J D, Davis L E, Dionne G F, Schloemann E F and Stitzer S N 2002 IEEE Trans. Microw. Theory Tech. 50 721
[30] El-Sharawy E B and Guo J S 1995 IEEE MTT-S International Microwave Symposium Digest 1 107
[31] Cao M and Pietig R 2005 IEEE Trans. Microw. Theory Tech. 53 2572
[32] Queck C K and Davis L E 2004 IEEE Trans. Microw. Theory Tech. 52 625
[33] Okubot K and Tsutsumiz M 2003 IEEE MTT-S International Microwave Symposium Digest 1 425
[34] Wu J, Yang X, Beguhn S, Lou J and Sun N X 2012 IEEE Trans. Microw. Theory Tech. 60 3959
[35] Marcelli R, Rossi M and Gasperis P D 1996 IEEE Trans. Magn. 32 4156
[36] Bartolucci G and Marcelli R 2000 J. Appl. Phys. 87 6905
[37] Tsai C S, Qiu G, Gao H L, Yang L W, et al. 2005 IEEE Trans. Magn. 41 3568
[38] Zhou H M, Li C, Zhu F J and Qu S X 2013 J. Appl. Phys. 114 083902
[39] Zhou H M and Zhu F J 2013 J. Appl. Phys. 114 153904
[40] Zhou H M and Lian J 2014 J. Appl. Phys. 115 193908
[41] Zhou H M, Lian J and Zhu F J 2014 J. Appl. Phys. 116 063904
[42] Wu J, Yang X, Lou J, Beguhn S and Sun N X 2012 IEEE MTT-S International Microwave Symposium 6259689
[1] Recent advances, perspectives, and challenges inferroelectric synapses
Bo-Bo Tian(田博博), Ni Zhong(钟妮), Chun-Gang Duan(段纯刚). Chin. Phys. B, 2020, 29(9): 097701.
[2] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[3] Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures
Yang-Ping Wang(汪样平), Fu-Fu Liu(刘福福), Cai Zhou(周偲), Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(7): 077507.
[4] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[5] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[6] Unusual tunability of multiferroicity in GdMn2O5 by electric field poling far above multiferroic ordering point
Xiang Li(李翔), Shuhan Zheng(郑书翰), Liman Tian(田礼漫), Rui Shi(石锐), Meifeng Liu(刘美风), Yunlong Xie(谢云龙), Lun Yang(杨伦), Nian Zhao(赵念), Lin Lin(林林), Zhibo Yan(颜志波), Xiuzhang Wang(王秀章), Junming Liu(刘俊明). Chin. Phys. B, 2019, 28(2): 027502.
[7] Enhanced magneto-electric effect in manganite tricolor superlattice with artificially broken symmetry
Huanyu Pei(裴环宇), Shujin Guo(郭蜀晋), Hong Yan(闫虹), Changle Chen(陈长乐), Bingcheng Luo(罗炳成), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(9): 097701.
[8] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[9] Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain
Xiaobin Guo(郭晓斌), Dong Li(李栋), Li Xi(席力). Chin. Phys. B, 2018, 27(9): 097506.
[10] NMR evidence of charge fluctuations in multiferroic CuBr2
Rui-Qi Wang(王瑞琦), Jia-Cheng Zheng(郑家成), Tao Chen(陈涛), Peng-Shuai Wang(王朋帅), Jin-Shan Zhang(张金珊), Yi Cui(崔祎), Chong Wang(王冲), Yuan Li(李源), Sheng Xu(徐胜), Feng Yuan(袁峰), Wei-Qiang Yu(于伟强). Chin. Phys. B, 2018, 27(3): 037502.
[11] Multiple broadband magnetoelectric response in Terfenol-D/PZT structure
Jian-Biao Wen(文建彪), Juan-Juan Zhang(张娟娟), Yuan-Wen Gao(高原文). Chin. Phys. B, 2018, 27(2): 027702.
[12] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[13] Magnetoelectric effect in multiferroic NdMn2O5
Syed Hamad Bukhari, Javed Ahmad. Chin. Phys. B, 2017, 26(1): 018103.
[14] Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22
Fen Wang(王芬), Shi-Peng Shen(申世鹏), Young Sun(孙阳). Chin. Phys. B, 2016, 25(8): 087503.
[15] Electrical control of magnetism in oxides
Cheng Song(宋成), Bin Cui(崔彬), Jingjing Peng(彭晶晶), Haijun Mao(毛海军), Feng Pan(潘峰). Chin. Phys. B, 2016, 25(6): 067502.
No Suggested Reading articles found!