Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 100302    DOI: 10.1088/1674-1056/25/10/100302
GENERAL Prev   Next  

Binding energy of the donor impurities in GaAs-Ga1-xAlxAs quantum well wires with Morse potential in the presence of electric and magnetic fields

Esra Aciksoz1, Orhan Bayrak1, Asim Soylu2
1 Department of Physics, Akdeniz University, 07058, Antalya, Turkey;
2 Department of Physics, Nigde University, 51240, Nigde, Turkey
Abstract  The behavior of a donor in the GaAs-Ga1-xAlxAs quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters (De, re, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential.
Keywords:  Morse potential      electric field      magnetic field      the donor atom      quantum well wire  
Received:  01 February 2016      Revised:  04 May 2016      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
  41.20.-q (Applied classical electromagnetism)  
Fund: Project supported by the Turkish Science Research Council (TÜBİTAK) and the Financial Supports from Akdeniz and Nigde Universities.
Corresponding Authors:  Orhan Bayrak     E-mail:  bayrak@akdeniz.edu.tr

Cite this article: 

Esra Aciksoz, Orhan Bayrak, Asim Soylu Binding energy of the donor impurities in GaAs-Ga1-xAlxAs quantum well wires with Morse potential in the presence of electric and magnetic fields 2016 Chin. Phys. B 25 100302

[1] Oubram O, Mora-Ramos M E and Gaggero-Sager L M 2009 Eur. Phys. J. B 71 233
[2] H. Wua, H. Wanga, L. Jianga, Q. Gong, S. Feng 2009 Physica B: Condensed Matter 404 122
[3] Duque C A, Mora-Ramos M E, Kasapoglu E, Sari H and Skmen I 2012 Phys. Status Solidi B 249 118
[4] Safwan S A, Asmaa A S, El Meshed N, Hekmat M H, El-Sherbini TH M and Allam S H 2010 Superlattices and Microstructures 47 606
[5] Jiang L, Wang H, Wu H, Gong Q and Feng S 2009 J. Appl. Phys. 105 053710
[6] Panahi H, Golshahi S and Doostdar M 2013 Physica B 418 47
[7] Osorioa F A P, Marques A B A, Machadoc P C M and Borges A N 2005 Microelectronics Journal 36 244
[8] Sali A, Fliyou M, Satori H and Loumrhari H 2003 J. Phys. Chem. Solids 64 31
[9] Akbas H, Dane C, Guleroglu A and Minez S 2009 Physica E: Low-dimensional Systems and Nanostructures 41 605
[10] Balandin A and Bandyopadhyay S 1995 Phys. Rev. B 52 8312
[11] Zeng Z, Garoufalis C S and Baskoutas S 2012 J. Phys. D: Appl. Phys. 45 235102
[12] Peter A J 2005 Physica E 28 225
[13] Rezaei G and Doostimotlagh N A 2012 Physica E 44 833
[14] Kasapoglu E 2008 Phys. Lett. A 373 140
[15] Khordad R 2009 Physica E: Low-dimensional Systems and Nanostructures 41 543
[16] Dalgic S, Ulas M and Ozkapi B 2005 J. Optoelectron. Adv. Mater. 7 2041
[17] Dalgic S and Ozkapi B 2009 J. Optoelectron. Adv. Mater. 11 2120
[18] Peter A J and Navaneethakrishnan K 2008 Superlattice Microstruct. 43 63
[19] Wang H, Jiang L, Gong Q and Feng S 2010 Physica B: Condens. Matter 405 3818
[20] Ghazi H E, Jorio A and Zorkani I 2013 Physica B: Conden. Matter 426 155
[21] Erdogan I, Akankan O and Akbas H 2006 Physica E: Low-dimensional Systems and Nanostructures 33 83
[22] Rezaei G, Mousavi S and Sadeghi E 2006 Physica B: Conden. Matter 407 2637
[23] Tangarife E and Duque C A 2010 Appl. Surf. Sci. 256 7234
[24] Kirak M, Altinok Y and Yilmaz S 2013 J. Lumin. 136 415
[25] Rezaei G and Shojaeian Kish S 2012 Physica E: Low-dimensional Systems and Nanostructures 45 56
[26] Kasapoglu E, Ungan F, Sari H and Sokmen I 2010 Physica E: Low-dimensional Systems and Nanostructures 42 1623
[27] Barseghyan M G, Kirakosyan A A and Duque C A 2009 Eur. Phys. J. B 72 521
[28] Rezaei G, Taghizadeh S F and Enshaeian A A 2012 Physica E: Low-dimensional Systems and Nanostructures 44 1562
[29] Baghramyan H M, Barseghyan M G, Duque C A and Kirakosyan A 2013 Physica E: Low-dimensional Systems and Nanostructures 48 164
[30] Elabsy A M 1994 J. Phys.: Condens. Matter 6 10025
[31] Raigoza N, Duque C A, Reyes-Gomez E and Oliveira L E 2006 Phys. stat. sol. 243 635
[32] Raigoza N, Morales A L, Montes A, Porras-Montenegro N and Duque C A 2004 Phys. Rev. B 69 045323
[33] Hakimyfard A, Barseghyan M G, Duque C A and Kirakosyan A A 2009 Physica B: Conden. Matter 404 5159
[34] Barseghyan M G, Hakimyfard A, Lopez S Y, Duque C A and Kirakosyan A A 2010 Physica E: Low-dimensional Systems and Nanostructures 42 1618
[35] Hakimyfard A, Barseghyan M G and Kirakosyan A A 2009 Physica E: Low-dimensional Systems and Nanostructures 41 1596
[36] Barseghyan M G, Hakimyfard A, Kirakosyan A A, Mora-Ramos M E and Duque C A 2012 Superlattices and Microstructures 51 119
[37] Bose C 1999 Physica E: Low-dimensional Systems and Nanostructures 4 180
[38] Murillo G and Porras-Montenegro N 2000 Phys. Status Solidi B 220 187
[39] Akankan O 2013 Superlattices and Microstructures 55 45
[40] Kubakaddi S S, Mulimani B G and Jali V M 1986 J. Phys. C: Solid State Phys. 19 5453
[41] Tavares M R S 2005 Phys. Rev. B 71 155332
[42] Hu B Y and Sarma S Das 1992 Phys. Rev. Lett. 68 1750
[43] Machado P C M, Borges A N and Osório F A P 2011 Phys. Status Solidi B 248 931
[44] Sakaki H 1980 Jpn. J. Appl. Phys. 19 L735
[45] Petroff P M, Gossard A C, Logan R A and Wiegmann W 1982 Appl. Phys. Lett. 41 635
[46] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[47] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhäuser Verlag)
[48] Killingbeck J P, Grosjean A and Jolicard G 2002 J. Chem. Phys. 116 447
[49] Bag M, Panja M M and Dutt R 1992 Phys. Rev. A 46 9
[50] Filho E D and Ricotta R M 2000 Phys. Lett. A 269 269
[51] Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 36 6955
[52] Butcher J C 2008 Numerical Methods for Ordinary Differential Equations (John Wiley) p. 93
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[4] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[5] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[6] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[7] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[8] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[9] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[10] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[13] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[14] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[15] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
No Suggested Reading articles found!