Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070308    DOI: 10.1088/1674-1056/24/7/070308
GENERAL Prev   Next  

Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels

Huang Weia b, Wen Qiao-Yana, Liu Bina, Gao Feia
a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b Science and Technology on Communication Security Laboratory, Chengdu 610041, China
Abstract  A multi-user quantum key distribution protocol is proposed with single particles and the collective eavesdropping detection strategy on a star network. By utilizing this protocol, any two users of the network can accomplish quantum key distribution with the help of a serving center. Due to the utilization of the collective eavesdropping detection strategy, the users of the protocol just need to have the ability of performing certain unitary operations. Furthermore, we present three fault-tolerant versions of the proposed protocol, which can combat with the errors over different collective-noise channels. The security of all the proposed protocols is guaranteed by the theorems on quantum operation discrimination.
Keywords:  quantum cryptography      quantum key distribution      collective eavesdropping detection      collective noise     
Received:  26 December 2014      Published:  05 July 2015
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61272057, 61170270, and 61309029), Beijing Higher Education Young Elite Teacher Project, China (Grant Nos. YETP0475 and YETP0477), and BUPT Excellent Ph.D. Students Foundation, China (Grant No. CX201441).
Corresponding Authors:  Huang Wei     E-mail:  huangwei096505@aliyun.com

Cite this article: 

Huang Wei, Wen Qiao-Yan, Liu Bin, Gao Fei Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels 2015 Chin. Phys. B 24 070308

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processings Bangalore, India, pp. 175-179
[2] Ekert A E 1991 Phys. Rev. Lett. 67 661
[3] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[4] Deng F G and Long G L 2004 Phys. Rev. A 70 012311
[5] Li H W, Yin Z Q, Wang S, Bao W S, Guo G C and Han Z F 2011 Chin. Phys. B 20 100306
[6] Phoenix S, Barnett S, Townsend P and Blow K 1995 J. Modern Opt. 42 1155
[7] Lin S, Huang C and Liu X F 2013 Phys. Scr. 87 035008
[8] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[9] Tang Y L, Yin H L and Chen S J 2014 Phys. Rev. Lett. 113 190501
[10] Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
[11] Wang X B 2007 Phys. Rev. A 75 052301
[12] Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commun. 3 634
[13] Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 100304
[14] Huang P, Fan J and Zeng G H 2014 Phys. Rev. A 89 042330
[15] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[16] Boström, K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[17] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[18] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[19] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[20] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[21] Gu B, Huang Y G, Fang X and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
[22] Ye T Y and Jiang L Z 2013 Chin. Phys. Lett. 30 040305
[23] Hillery M, Bužek V and Bérthiaume A 1999 Phys. Rev. A 59 1829
[24] Wang T Y and Wen Q Y 2011 Quant. Inf. Comput. 11 434
[25] Yang Y G, Wang Y A, Chai H P, Teng Y W and Zhang H 2013 Opt. Commun. 284 3479
[26] Zhou N R, Song H C and Gong L H 2013 Int. J. Theor. Phys. 52 4174
[27] Chen X B, Xu G, Su Y and Yang Y X 2014 Quant. Inf. Comput. 14 589
[28] Zhang Z J 2006 Phys. A 361 233
[29] Wang T Y, Cai X Q and Zhang R L 2014 Quantum Inf. Process. 13 1677
[30] Yang Y G and Wen Q Y 2009 J. Phys. A: Math. Theor. 42 055305
[31] Zeng G H, Lee M H, Guo Y and He G Q 2007 Int. J. Quantum Inf. 5 553
[32] Zeng G H, Keitel C H 2002 Phys. Rev. A 65 042312
[33] Wen X J 2010 Phys. Scr. 82 065403
[34] Shih H, Lee K and Hwang T 2009 IEEE J. Sel. Top. Quant. Electron. 15 1602
[35] Gao F, Qin S J, Guo F Z and Wen Q Y 2011 IEEE J. Quant. Electron. 47 630
[36] Liu B, Gao F and Wen Q Y 2011 IEEE J. Quant. Electron. 47 1383
[37] Liu B, Gao F, Jia H Y and Huang W 2013 Quantum Inf. Process. 12 887
[38] Lin S, Wen Q Y, Qin S J and Zhu F C 2009 Opt. Commun. 282 4455
[39] Gao G 2010 Opt. Commun. 283 2997
[40] Liu B, Gao F and Wen Q Y 2011 Int. J. Theor. Phys. 51 1211
[41] Huang W, Wen Q Y, Liu B, Gao F and Chen H 2012 Int. J. Theor. Phys. 51 2787
[42] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[43] Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306
[44] Lin S 2014 Quantum Inf. Comput. 14 845
[45] Yang Y G, Teng Y W, Chai H P and Wen Q Y 2011 Phys. Scr. 83 025003
[46] Yang C W, Tsai C W amd Hwang T 2013 Quantum Inf. Process. 12 3043
[47] Wu G T, Zhou N R, Gong L H and Liu S Q 2014 Acta Phys. Sin. 63 060302 (in Chinese)
[48] Chang Y, Zhang S B, Li J and Yan L L 2014 Sci. China-Phys. Mech. Astron. 57 1907
[49] Huang W, Wen Q Y, Jia H Y, Qin S J and Gao F 2012 Chin. Phys. B 21 100308
[50] Cabello A 2007 Phys. Rev. A 75 020301
[51] Sun Y, Wen Q Y, Gao F and Zhu F C 2009 Phys. Rev. A 80 032321
[52] Gu B, Zhang C Y, Cheng G S and Huang Y G 2011 Sci. China-Phys. Mech. Astron. 54 942
[53] Walton Z D, Abouraddy A F and Sergienko A V 2003 Phys. Rev. Lett. 91 087901
[54] Kwiat P G, Berglund A J, Altepeter J B and White A G 2000 Science 290 498
[55] Qin S J, Gao F, Wen Q Y and Zhu F C 2006 Phys. Lett. A 357 101
[56] Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
[57] Deng F G, Li X H, Chen P and Zhou H Y 2006 arXiv: 0604060
[58] Mauro D'Ariano G, Presti P L and Paris M G A 2001 Phys. Rev. Lett. 87 270404
[59] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[60] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[61] Cai Q Y 2006 Phys. Lett. A 351 23
[62] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[63] Xie C M, Liu Y M, Li G F and Zhang Z J 2014 Quantum Inf. Process. 13 2713
[64] Gao F, Qin S J, Wen Q Y and Zhu F C 2010 Opt. Commun. 283 192
[65] Wang G M and Ying M S 2006 Phys. Rev. A 73 042301
[1] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[2] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[3] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[4] Reference-frame-independent quantum key distribution with an untrusted source
Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(3): 030303.
[5] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[6] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[7] Fault tolerant controlled quantum dialogue against collective noise
Li-Wei Chang(常利伟), Yu-Qing Zhang(张宇青), Xiao-Xiong Tian(田晓雄), Yu-Hua Qian(钱宇华), Shi-Hui Zheng(郑世慧). Chin. Phys. B, 2020, 29(1): 010304.
[8] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[9] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[10] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
[11] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[12] Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲). Chin. Phys. B, 2018, 27(9): 090307.
[13] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[14] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[15] Practical security of continuous-variable quantum key distribution under finite-dimensional effect of multi-dimensional reconciliation
Yingming Zhou(周颖明), Xue-Qin Jiang(蒋学芹), Weiqi Liu(刘维琪), Tao Wang(王涛), Peng Huang(黄鹏), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(5): 050301.
No Suggested Reading articles found!