Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050306    DOI: 10.1088/1674-1056/24/5/050306
GENERAL Prev   Next  

A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states

Xu Shu-Jiang (徐淑奖)a b, Chen Xiu-Bo (陈秀波)b c, Wang Lian-Hai (王连海)a, Niu Xin-Xin (钮心忻)b, Yang Yi-Xian (杨义先)b
a Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputer Center in Jinan), Jinan 250014, China;
b Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
c State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
Abstract  Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security.
Keywords:  quantum information hiding      quantum covert channel      entanglement swapping      high-level Bell states  
Received:  06 August 2014      Revised:  26 December 2014      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61303199, 61272514, 61170272, 61121061, and 61411146001), the Shandong Provincial Natural Science Foundation of China (Grant Nos. ZR2013FM025, ZR2013FQ001, and ZR2014FM003), the Shandong Provincial Outstanding Research Award Fund for Young Scientists of China (Grant Nos. BS2013DX010 and BS2014DX007), the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-13-0681), the National Development Foundation for Cryptological Research, China (Grant No. MMJJ201401012), the Fok Ying Tong Education Foundation, China (Grant No. 131067), and the Shandong Academy of Sciences Youth Fund Project, China (Grant No. 2013QN007).
Corresponding Authors:  Xu Shu-Jiang     E-mail:  yangh@korea.ac.kr
About author:  03.67.Dd; 03.67.-a; 03.65.-w; 03.67.Hk

Cite this article: 

Xu Shu-Jiang (徐淑奖), Chen Xiu-Bo (陈秀波), Wang Lian-Hai (王连海), Niu Xin-Xin (钮心忻), Yang Yi-Xian (杨义先) A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states 2015 Chin. Phys. B 24 050306

[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, 12-19 December, 1984, Bangalore, India, p. 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Li F Y 2014 Chin. Phys. Lett. 31 070302
[4] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[5] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[6] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[7] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[8] Chen X B, Niu X X, Zhou X J and Yang Y X 2013 Quantum Inf. Process 12 365
[9] Bailey K and Curran K 2006 Multimedia Tools and Applications 30 55
[10] Lin E T and Eskicioglu A M 2005 Proceedings of the IEEE, Special Issue on Advances in Video Coding and Delivery 93 171
[11] Shaw B A and Brun T A 2011 Phys. Rev. A 83 022310
[12] Mogos G 2008 International Symposium on Computer Science and Its Applications, 13-15 October, 2008, Hobart, Australia, p. 187
[13] Liao X, Wen Q Y, Sun Y and Zhang J 2010 The Journal of Systems and Software 83 1801
[14] Qu Z G, Chen X B, Niu X X and Yang Y X 2010 Opt. Commun. 283 4782
[15] Qu Z G, Chen X B, Niu X X and Yang Y X 2011 Opt. Commun. 284 2075
[16] Ye T Y and Jiang L Z 2013 Chin. Phys. B 22 050309
[17] Ye T Y and Jiang L Z 2013 Chin. Phys. B 22 040305
[18] Fatahi N and Naseri M 2012 Int. J. Theor. Phys 51 2094
[19] Xu S J, Chen X B, Niu X X and Yang Y X 2013 Sci. Chin. Phys. 56 1745
[20] Xu S J, Chen X B, Niu X X and Yang Y X 2013 Commun. Theor. Phys. 59 547
[21] Cerf N J 2000 Phys. Rev. Lett. 84 4497
[22] Cerf N J 2000 J. Mod. Opt. 47 187
[23] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[24] Karimipour V and Bahraminasab B 2000 Phys. Rev. A 65 042320
[25] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
[26] Hardy L and Song D D 2000 Phys. Rev. A 62 052315
[27] Chen X B, Wen Q Y, Guo F Z, Sun Y, Xu G and Zhu F C 2008 Int. J. Quantum Inform. 6 899
[28] Chen X B, Wang T Y, Du J Z, Wen Q Y and Zhu F C 2008 Int. J. Quantum Inform. 6 543
[29] Dai H Y, Chen P X, Liang L M and Li C Z 2006 Phys. Lett. A 355 285
[30] Dai H Y, Zhang M and Kuang L E 2008 Commun. Theor. Phys. 50 73
[31] Ashok J, Raju Y, Munisankara S and Srinivas K 2010 Int. J. Eng. Sci. Technol. 2 5985
[32] Wu Y H, Zhai W D, Cao W Z and Li C 2011 Int. J. Theor. Phys. 50 325
[1] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[2] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[3] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[4] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[5] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[6] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[7] An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension
Gao Gan (高干). Chin. Phys. B, 2015, 24(8): 080305.
[8] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
[9] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
[10] Large payload quantum steganography based on cavity quantum electrodynamics
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(4): 040305.
[11] Arbitrated quantum signature scheme based on entanglement swapping with signer anonymity
Li Wei (李伟), Fan Ming-Yu (范明钰), Wang Guang-Wei (王光卫). Chin. Phys. B, 2012, 21(12): 120305.
[12] Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade
Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Zhang Jian-Song(张建松) . Chin. Phys. B, 2011, 20(11): 110304.
[13] Participant attack on quantum secret sharing based on entanglement swapping
Song Ting-Ting(宋婷婷), Zhang Jie(张劼), Gao Fei(高飞), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣). Chin. Phys. B, 2009, 18(4): 1333-1337.
[14] Implementing remote controlled-NOT gates and entanglement swapping via geometric phase gates in ion-trap systems
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), and Huang Zhi-Ping(黄志平). Chin. Phys. B, 2008, 17(1): 180-184.
[15] A quantum dense coding implementation in an ion trap
Pan Chang-Ning(潘长宁) and Fang Mao-Fa(方卯发). Chin. Phys. B, 2008, 17(1): 34-37.
No Suggested Reading articles found!