Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 046701    DOI: 10.1088/1674-1056/24/4/046701

A space-dependent atomic superfluid current in Bose-Einstein condensates

Li Feia c, Li Yong-Fanb, Zhang Ping-Kea, Ai Zhen-Zhoua, Wu Chang-Yia
a Department of Education Science, Hunan First Normal University, Changsha 410205, China;
b Department of Information Science and Engineering, Hunan First Normal University, Changsha 410205, China;
c Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China

A space-dependent atomic superfluid current with an explicit analytical expression and its role in Bose-Einstein condensates are studied. The factors determining the intensity and oscillating amplitude of the space-dependent atomic superfluid current are explored in detail. Research findings reveal that the intensity of the current can be regulated by setting an appropriate configuration of the trap and its oscillating amplitude can be adjusted via Feshbach resonance. It is numerically demonstrated that the space-dependent atomic superfluid current can exert great influence on the spatial distribution of condensed atoms, and even force condensed atoms into very complex distributional states with spatial chaos.

Keywords:  Bose-Einstein condensates      superfluid current      chaos  
Received:  25 September 2014      Revised:  26 November 2014      Published:  05 April 2015
PACS:  67.85.Jk (Other Bose-Einstein condensation phenomena)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.45.Ac (Low-dimensional chaos)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204076 and 11147011), the Scientific Research Fund of Hunan First Normal University (Grant No. XYS13N16), and the Opening Project of Key Laboratory of Low-dimensional Quantum Structures and Quantum Control (Hunan Normal University), Ministry of Education (Grant No. QSQC1005).

Corresponding Authors:  Li Fei     E-mail:

Cite this article: 

Li Fei, Li Yong-Fan, Zhang Ping-Ke, Ai Zhen-Zhou, Wu Chang-Yi A space-dependent atomic superfluid current in Bose-Einstein condensates 2015 Chin. Phys. B 24 046701

[1] Landau L D 1941 J. Phys. (Moscow) 5 71
[2] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[3] Maragò O M, Hopkins S A, Arlt J, Hodby E, Hechenblaikner G and Foot C J 2000 Phys. Rev. Lett. 84 2056
[4] Chikkatur A P, Görlitz A, Stamper-Kurn D M, Inouye S, Gupta S and Ketterle W 2000 Phys. Rev. Lett. 85 483
[5] Amo A, Lefrère J, Pigeon S, Adrados C, Ciuti C, Carusotto I, Houdré R, Giacobino E and Bramati A 2009 Nat. Phys. 5 805
[6] Carusotto I and Ciuti C 2004 Phys. Rev. Lett. 93 166401
[7] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
[8] Cren T, Serrier-Garcia L, Debontridder F and Roditchev D 2011 Phys. Rev. Lett. 107 097202
[9] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
[10] Guo X Y, Ren Z Z, Guo G G and Peng J 2012 Phys. Rev. A 86 053605
[11] Dubessy R, Liennard T, Pedri P and Perrin H 2012 Phys. Rev. A 86 011602
[12] Yulin A V, Bludov Yu V, Konotop V V, Kuzmiak V and Salerno M 2011 Phys. Rev. A 84 063638
[13] Middelkamp S, Torres P J, Kevrekidis P G, Frantzeskakis D J, Carretero-González R, Schmelcher P, Freilich D V and Hall D S 2011 Phys. Rev. A 84 011605
[14] Burger S, Cataliotti F S, Fort C, Minardi F, Inguscio M, Chiofalo M L and Tosi M P 2001 Phys. Rev. Lett. 86 4447
[15] Stießberger J S and Zwerger W 2000 Phys. Rev. A 62 061601
[16] Kagan Yu and Maksimov L A 2000 Phys. Rev. Lett. 85 3075
[17] Zhang S L, Zhou Z W and Wu B 2013 Phys. Rev. A 87 013633
[18] Yan Z Y, Konotop V V, Yulin A V and Liu W M 2012 Phys. Rev. E 85 016601
[19] Wouters M and Savona V 2010 Phys. Rev. B 81 054508
[20] Hoefer M A, Chang J J, Hamner C and Engels P 2011 Phys. Rev. A 84 041605
[21] Marecki P 2012 J. Phys. A: Math. Theor. 45 295501
[22] Das P, Vyas M and Panigrahi P K 2009 J. Phys. B: At. Mol. Opt. Phys. 42 245304
[23] Fang J and Hai W 2005 Physica B 370 61
[24] Chong G, Hai W and Xie Q 2004 Chaos 14 217
[25] Li F, Ren Z Z, Luo H L, Shu W X and Wu Q 2007 Commun. Theor. Phys. 48 107
[26] Chong G, Hai W and Xie Q 2005 Phys. Rev. E 71 016202
[27] Li F, Zhang D and Li W 2011 Acta Phys. Sin. 60 120304 (in Chinese)
[28] Li F, Zhang D, Rong S and Xu Y 2013 J. Exp. Theor. Phys. 117 800
[29] Abdullaev F Kh and Kraenkel R A 2000 Phys. Rev. A 62 023613
[30] Li F, Shu W X, Luo H L and Ren Z Z 2007 Chin. Phys. 16 650
[31] Hai W, Lee C, Chong G and Shi L 2002 Phys. Rev. E 66 026202
[32] Li Y and W Hai 2005 J. Phys. A: Math. Gen. 38 4105
[33] Coullet P and Vandenberghe N 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1593
[34] Gardiner S A, Jaksch D, Dum R, Cirac J I and Zoller P 2000 Phys. Rev. A 62 023612
[35] Jiang H, Susanto H, Benson T and Cliffe K 2014 Phys. Rev. A 89 013828
[36] White D, Ruddell S and Hoogerland M 2013 Phys. Rev. A 88 063603
[37] Lenz M, Wüster S, Vale C, Heckenberg N, Rubinsztein-Dunlop H, Holmes C, Milburn G and Davis M 2013 Phys. Rev. A 88 013635
[38] Gertjerenken B, Arlinghaus S, Teichmann N and Weiss C 2010 Phys. Rev. A 82 023620
[39] Martin J, Georgeot B and Shepelyansky D L 2009 Phys. Rev. E 79 066205
[40] Lee C, Hai W, Shi L, Zhu X and Gao K 2001 Phys. Rev. A 64 053604
[41] Březinová I, Lode A, Streltsov A, Alon O, Cederbaum L and Burgdörfer J 2012 Phys. Rev. A 86 013630
[42] Li Q, Wang S and Li Z 2014 Chin. Phys. B 23 060310
[43] Song C, Li J and Zong F 2012 Chin. Phys. B 21 020306
[44] Kagan Y, Surkov E L and Shlyapnikov G V 1997 Phys. Rev. Lett. 79 2604
[45] Sakaguchi H and Malomed B A 2005 Phys. Rev. E 72 046610
[46] Abdullaev F Kh, Gammal A, Salerno M and Tomio L 2008 Phys. Rev. A 77 023615
[47] Porter M A, Kevrekidis P G, Malomed B A and Frantzeskakis D J 2007 Physica D 229 104
[48] Xin X, Huang F, Xu Z and Li H 2014 Chin. Phys. B 23 070307
[49] Zhou Z, Yu H and Yan J 2010 Chin. Phys. B 19 010304
[50] Wang Q, Wen L and Li Z 2012 Chin. Phys. B 21 080501
[51] Rodrigues A S, Kevrekidis P G, Porter M A, Frantzeskakis D J, Schmelcher P and Bishop A R 2008 Phys. Rev. A 78 013611
[52] Moerdijk A J, Verhaar B J and Axelsson A 1995 Phys. Rev. A 51 4852
[53] Roberts J L, Claussen N R, Burke J P, Greene C H, Cornell E A and Wieman C E 1998 Phys. Rev. Lett. 81 5109
[54] Stenger J, Inouye S, Andrews M R, Miesner H J, Stamper-Kurn D M and Ketterle W 1999 Phys. Rev. Lett. 82 2422
[55] Theocharis G, Schmelcher P, Kevrekidis P G and Frantzeskakis D J 2005 Phys. Rev. A 72 033614
[1] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[2] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[3] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[4] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[5] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[6] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[7] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[8] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[9] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹), Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[10] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[11] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[12] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[13] Design new chaotic maps based on dimension expansion
Abdulaziz O A Alamodi, Kehui Sun(孙克辉), Wei Ai(艾维), Chen Chen(陈晨), Dong Peng(彭冬). Chin. Phys. B, 2019, 28(2): 020503.
[14] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[15] Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
Runzu Zhang(张润祖), Weihua Zhang(张为华), Barbara Dietz, Guozhi Chai(柴国志), Liang Huang(黄亮). Chin. Phys. B, 2019, 28(10): 100502.
No Suggested Reading articles found!