Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 113402    DOI: 10.1088/1674-1056/24/11/113402

Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations

Li Yong-Qinga b, Zhang Yong-Jiaa, Zhao Jin-Fenga b, Zhao Mei-Yuc, Ding Yonga
a Department of Physics, Liaoning University, Shenyang 110036, China;
b State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
c Institute of Theoretical Simulation Chemistry, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China
Abstract  Vector correlations of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S)are studied based on a recent DMBESEC PES for the first excited state of NH2 [J. Phys. Chem. A 114 9644 (2010)] by using a quasi-classical trajectory method. The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0–5 and j = 0 states in a wide collision energy range (10–50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly, the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H–H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(φr), and P(θr,φr).
Keywords:  vector correlations      vibrational excitation      differential cross section      stereodynamics      rotational polarization  
Received:  20 April 2015      Revised:  18 June 2015      Accepted manuscript online: 
PACS:  34.50.Lf (Chemical reactions)  
  34.50.-s (Scattering of atoms and molecules)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141 and11404080), the Special Fund Based Research New Technology of Methanol conversion and Coal Instead of Oil, the China Postdoctoral Science Foundation (Grant No. 2014M550158), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grant No. 2014-1685), and the Program for Liaoning Excellent Talents in University, China (Grant Nos. LJQ2015040 and LJQ2014001).
Corresponding Authors:  Li Yong-Qing, Zhao Mei-Yu, Ding Yong     E-mail:;;

Cite this article: 

Li Yong-Qing, Zhang Yong-Jia, Zhao Jin-Feng, Zhao Mei-Yu, Ding Yong Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations 2015 Chin. Phys. B 24 113402

[1] Umemoto H, Asai T and Kimura Y;1997 J. Chem. Phys. 106 4985
[2] Alagia M, Balucani N, Cartechini L, Cachavecchia P, Volpi G G, Pederson L A, Schatz G C, Lendvay G, Harding L B, Hollebeek T, Ho T S and Rabitz H;1999 J. Chem. Phys. 110 8857
[3] Dodd J A, Lipson S J, Flanagan D J, Blumberg W A M, Pearson J C and Green B D;1991 J. Chem. Phys. 94 4301
[4] Umemoto H and Matsumoto K;1996 J. Chem. Phys. 104 9640
[5] Li Y Q and Varandas A J C;2010 J. Phys. Chem. A 114 9644
[6] Takayanagui T, Kobayashi H and Tsunashima S;1996 J. Chem. Soc. Faraday Trans. 92 1311
[7] Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 6669
[8] Pederson L, Schatz G, Hollebeek T, Ho T S, Rabitz H and Harding L B;2000 J. Phys. Chem. A 104 2301
[9] Li Y Q, Ma F C and Sun M T;2013 J. Chem. Phys. 139 154305
[10] Jensen P, Buenker R J, Hirsch G and Rai S N;1990 Mol. Phys. 70 443
[11] Li Y Q, Song Y Z, Song P, Li Y Z, Ding Y, Sun M T and Ma F C;2012 J. Chem. Phys. 136 194705
[12] Funken K, Engels B, Peyerimhoff S D, Grein F;1990 Chem. Phys. Lett. 172 180
[13] Chu T S, Han K L 2005 J. Phys. Chem. A 109 2050
[14] Chu T S, Han K L and Varandas A J C 2006 J. Phys. Chem. A 110 1666
[15] Chu T S, Zhang Y and Han K L;2006 Int. Rev. Phys. Chem. 25 201
[16] Chu T S and Han K L;2008 Phys. Chem. Chem. Phys. 10 2431
[17] Suzuki T, Shihira Y, Sato T, Umemoto H and Tsunashima S;1993 J. Chem. Soc. Faraday Trans. 89 995
[18] Buenker R J, Peric M, Peyerimhoff S D and Marian R;1981 Mol. Phys. 43 987
[19] Li Y Q, Yuan J C, Chen M D, Ma F C and Sun M T;2013 J. Comput. Chem. 34 1686
[20] Pederson L A, Schatz G C, Ho T, Hollebeek T, Rabitz H and Harding L B;1999 J. Chem. Phys. 110 9091
[21] Chu T S, Lu R F, Han K L, Tang X N, Xu H F and Ng C Y;2005 J. Chem. Phys. 122 244322
[22] Brandi R, Leonardi E and Petrongolo C;1997 J. Phys. Chem. A 101 5696
[23] Peyerimhoff S D and Buenker R J;1979 Can. J. Chem. 57 3182
[24] Rodrigues S P J, Fontes A C G, Li Y Q and Varandas A J C;2011 Chem. Phys. Lett. 516 17
[25] Adam L, Hack W, McBane G C, Zhu H, Qu Z W and Schinke R;2007 J. Chem. Phys. 126 034304
[26] Qu Z, Zhu H, Schinke R, Adam L and Hack W;2005 J. Chem. Phys. 122 204313
[27] Vetter R, Zülicke L, Koch A, van Dishoeck E F and Peyerimhoff S D;1996 J. Chem. Phys. 104 5558
[28] Zhou S L, Xie D, Lin S Y and Guo H;2008 J. Chem. Phys. 128 224316
[29] Varandas A J C and Poveda L A 2006 Theor. Chem. Acc. 116 404
[30] Bella S and Schaefer III H F 1977 J. Chem. Phys. 67 5173
[31] Li X, Wang M, Pino I, Yang C and Ma L 2009 Phys. Chem. Chem. Phys. 11 10438
[32] Li X, Wang M, Pino I, Yang C and Wu J 2010 Phys. Chem. Chem. Phys. 12 7942
[33] Liu L S and Shi Y 2011 Chin. Phys. B 20 013404
[34] Li Y Q, Zhao J F, Zhang Y J, Chi X L, Ding Y and Ma F C 2014 Chin. Phys. B 23 123401
[35] Ma J J, Zou Y and Liu H T 2013 Chin. Phys. B 22 063402
[36] Zhao D, Chu T S and Hao C 2013 Chin. Phys. B 22 063401
[37] Yu Y J and Xiu Q 2011 Chin. Phys. B 20 123402
[38] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[39] Wei Q 2014 Chin. Phys. B 23 023401
[40] Yue X F 2013 Chin. Phys. B 22 113401
[41] Chi X L, Zhao J F, Zhang Y J, Ma F C and Li Y Q 2015 Chin. Phys. B 24 053401
[42] Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
[43] Wang Y P, Zhao M Y and Yao S H 2013 Chin. Phys. B 22 128201
[44] Wei L, Zhou H W and Zhang L 2013 Chin. Phys. B 22 096201
[45] Pederson L A, Schatz G C, Ho T, Hollebeek T, Rabitz H and Harding L B 2000 J. Phys. Chem. A 104 2301
[46] Fitzcharles M S and Schatz G C 1986 J. Phys. Chem. 90 3634
[47] Varandas A J C, Voronin A I, Riganelli A and Caridade P J S B 1997 Chem. Phys. Lett. 278 325
[48] Pino I, Martinazzob R and Tantardini G F 2008 Phys. Chem. Chem. Phys. 10 5545
[1] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[2] Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions
Jungang Fan(范军刚), Xiangyang Miao(苗向阳), and Xiangfu Jia(贾祥福). Chin. Phys. B, 2020, 29(12): 120301.
[3] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[4] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[5] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[6] Polarization and exchange effects in elastic scattering of electron with atoms and ions
Zhang-Jin Chen(陈长进), Dan-Dan Cui(崔丹丹). Chin. Phys. B, 2018, 27(5): 053403.
[7] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[8] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[9] Differential cross sections of positron—hydrogen collisions
Rong-Mei Yu(于荣梅), Chun-Ying Pu(濮春英), Xiao-Yu Huang(黄晓玉), Fu-Rong Yin(殷复荣), Xu-Yan Liu(刘旭焱), Li-Guang Jiao(焦利光), Ya-Jun Zhou(周雅君). Chin. Phys. B, 2016, 25(7): 073401.
[10] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[11] State-to-state quantum dynamics of N(2D)+HD (v=0, j=0) reaction
Yong Zhang(张勇). Chin. Phys. B, 2016, 25(12): 123104.
[12] Triple differential cross sections of magnesium in doubly symmetric geometry
S Y Sun(孙世艳), X Y Miao(苗向阳), Xiang-Fu Jia(贾祥富). Chin. Phys. B, 2016, 25(1): 013401.
[13] State-to-state quantum dynamics of the N(4S)+H2 (X1Σ+)→NH(X3-)+H(2S) reaction and its reaction mechanism analysis
Zhang Jing, Gao Shou-Bao, Wu Hui, Meng Qing-Tian. Chin. Phys. B, 2015, 24(8): 083104.
[14] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin, Zhao Jin-Feng, Zhang Yong-Jia, Ma Feng-Cai, Li Yong-Qing. Chin. Phys. B, 2015, 24(5): 053401.
[15] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian, Zhang Ying-Ying, Shi Ying, Li Ze-Rui, Jin Ming-Xing. Chin. Phys. B, 2015, 24(4): 043402.
No Suggested Reading articles found!