Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 108506    DOI: 10.1088/1674-1056/24/10/108506

Fabrication and characterization of novel high-speed InGaAs/InP uni-traveling-carrier photodetector for high responsivity

Chen Qing-Tao, Huang Yong-Qing, Fei Jia-Rui, Duan Xiao-Feng, Liu Kai, Liu Feng, Kang Chao, Wang Jun-Chu, Fang Wen-Jing, Ren Xiao-Min
Institute of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT); State Key Laboratory of Information Photonics and Optical Communications (BUPT), Beijing 100876, China

A top-illuminated circular mesa uni-traveling-carrier photodetector (UTC-PD) is proposed in this paper. By employing Gaussian graded doping in InGaAs absorption layer and InP depleted layer, the responsivity and high speed response characteristics of the device are optimized simultaneously. The responsivity up to 1.071 A/W (the external quantum efficiency of 86%) is obtained at 1550 nm with a 40-μ diameter device under 10-V reverse bias condition. Meanwhile, the dark current of 7.874 nA and the 3-dB bandwidth of 11 GHz are obtained with the same device at a reverse bias voltage of 3 V.

Keywords:  uni-traveling-carrier photodetector      device growth and fabrication      responsivity      3-dB bandwidth     
Received:  28 April 2015      Published:  05 October 2015
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  61.05.cp (X-ray diffraction)  
  82.33.Ya (Chemistry of MOCVD and other vapor deposition methods)  

Project supported partially by the National Natural Science Foundation of China (Grant Nos. 61274044 and 61077049), the National Basic Research Program of China (Grant No. 2010CB327600), the Program of Key International Science and Technology Cooperation Projects, China (Grant No. 2011RR000100), the 111 Project of China (Grant No. B07005), the Specialized Research Fund for the Doctoral Program of China (Grant No. 20130005130001), and the Natural Science Foundation of Beijing, China (Grant No. 4132069).

Corresponding Authors:  Huang Yong-Qing     E-mail:

Cite this article: 

Chen Qing-Tao, Huang Yong-Qing, Fei Jia-Rui, Duan Xiao-Feng, Liu Kai, Liu Feng, Kang Chao, Wang Jun-Chu, Fang Wen-Jing, Ren Xiao-Min Fabrication and characterization of novel high-speed InGaAs/InP uni-traveling-carrier photodetector for high responsivity 2015 Chin. Phys. B 24 108506

[1] Beling A and Campbell J C 2009 J. Lightwave Technol. 27 343
[2] Ishibashi T, Shimizu N, Kodama S, Ito H, Nagastuma T and Furuta T 1997 OSA TOPS on Ultrafast Electronics and Optoelectronics 1383
[3] Shimizu N, Watanabe N, Furuta T and Ishibashi T 1998 IEEE Photon. Technol. Lett. 10 412
[4] Li X, Semiguel S, Li N, Campbell J C, Tulchinsky D A and Williams K J 2003 Electron. Lett. 39 1466
[5] Lin L Y, Wu, M C, Itoh T, Vang T A, Muller R E, Sivco D L and Cho A Y 1996 IEEE Photon. Technol. Lett. 8 1376
[6] Chtioui M, Enard A, Carpentier D, Bernard S, Rousseau B, Lelarge F, Pommereau F and Achouche M 2008 IEEE Photon. Technol. Lett. 20 1163
[7] Li N, Li X, Demiguel S, Zheng X, Campbell J C, Tulchinsky D A, Williams K J, Isshiki T D, Kinsey G S and Sudharsansan R 2004 IEEE Photon. Technol. Lett. 16 864
[8] Duan N, Wang X, Li N, Liu H and Campbell J C 2006 J. Quantum Electron. 42 1255
[9] Wang X, Ling N, Chen H and Campbell J C 2007 IEEE Photon. Technol. Lett. 19 1272
[10] Li Z, Pan H, Chen H, Beling A and Campbell J C 2010 IEEE J. Quantum Electron. 46 626
[11] Zhang L Z and Zuo Y H 2012 Acta Phys. Sin. 59 452 (in Chinese)
[12] Li C, Xue C L, Li C B, Liu Z, Cheng B W and Wang Q M 2013 Chin. Phys. B 22 118503
[13] Zang G, Huang Y Q, Luo Y, Duan X F and Ren X M 2014 Acta Phys. Sin. 63 208502 (in Chinese)
[14] Wang Q, Lv J H, Xiong D P, Zhou J, Huang H, Miao A, Cai S W, Huang Y Q and Ren X M 2007 Chin. Opt. Lett. 5 358
[15] Wang J, Deng C, Jia Z G, Wang Y F, Wang Q, Huang Y Q and Ren X M 2013 Chin. Phys. Lett. 30 116801
[16] Seabaugh A C, Frensley W R, Matyi R J and Cabaniss G E 1989 IEEE T. Electron. Dev. 36 309
[17] Kato K 1999 IEEE T. Microwave Theory 47 1265
[18] Duan X F, Huang Y Q, Shang Y F, Wang J and Ren X M 2014 Opt. Lett. 39 2447
[19] Wohlmuth W A, Seo J W, Fay P, Caneau C and Adesida I 1997 IEEE Photon. Technol. Lett. 9 1388
[20] Colace L and Balbi M 2008 J. Lightwave Technol. 26 2211
[21] Zhou Q G, Cross A S, Beling A, Fu Y, Lu Z W and Campbell J C 2013 IEEE Photon. Technol. Lett. 25 907
[22] Demiguel S, Li N, Li X, Zheng X, Kim J, Campbell J C, Lu H and Anselm A 2003 IEEE Photon. Technol. Lett. 15 1761
[23] Fukano H, Muramoto Y, Takahata K and Matsuoka Y 1999 Electron. Lett. 35 1664
[24] Hosseinifar M, Ahmadi V and Abaeiani G 2011 J. Lightwave Technol. 29 1285
[25] Ito H, Furuta T, Kodama S and Ishibashi T 2000 Electron. Lett. 36 1809
[1] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[2] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[3] Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures
Zhi-Feng Tian(田志锋), Peng Xu(徐鹏), Yao Yu(余耀), Jian-Dong Sun(孙建东), Wei Feng(冯伟), Qing-Feng Ding(丁青峰), Zhan-Wei Meng(孟占伟), Xiang Li(李想), Jin-Hua Cai(蔡金华), Zhong-Xin Zheng(郑中信), Xin-Xing Li(李欣幸), Lin Jin(靳琳), Hua Qin(秦华), Yun-Fei Sun(孙云飞). Chin. Phys. B, 2019, 28(5): 058501.
[4] Metal halide perovskite photodetectors: Material featuresand device engineering
Ye Wang(王烨), Meng-Lei Gao(高孟磊), Jin-Liang Wu(吴金良), Xing-Wang Zhang(张兴旺). Chin. Phys. B, 2019, 28(1): 018502.
[5] Performance enhancement of CMOS terahertz detector by drain current
Xingxing Zhang(张行行), Xiaoli Ji(纪小丽), Yiming Liao(廖轶明), Jingyu Peng(彭静宇), Chenxin Zhu(朱晨昕), Feng Yan(闫锋). Chin. Phys. B, 2017, 26(9): 098401.
[6] Spectral response modeling and analysis of p-n-p In0.53Ga0.47As/InP HPTs
Jun Chen(陈俊), Jiabing Lv(吕加兵). Chin. Phys. B, 2016, 25(9): 097202.
[7] Enhanced near-infrared responsivity of silicon photodetector by the impurity photovoltaic effect
Yuan Ji-Ren, Huang Hai-Bin, Deng Xin-Hua, Liang Xiao-Jun, Zhou Nai-Gen, Zhou Lang. Chin. Phys. B, 2015, 24(4): 048501.
[8] Analysis on high speed response of a uni-traveling-carrier double hetero-junction phototransistor
Jiang Zhi-Yun, Xie Hong-Yun, Zhang Liang-Hao, Zhang Wan-Rong, Hu Rui-Xin, Huo Wen-Juan. Chin. Phys. B, 2015, 24(4): 048504.
[9] Nb5N6 microbolometer array for terahertz detection
Tu Xue-Cou, Kang Lin, Liu Xin-Hua, Mao Qing-Kai, Wan Chao, Chen Jian, Jin Biao-Bing, Ji Zheng-Ming, Xu Wei-Wei, Wu Pei-Heng. Chin. Phys. B, 2013, 22(4): 040701.
[10] Optically controlled SiCGe/SiC heterojunction transistor with charge-compensation layer
Pu Hong-Bin, Cao Lin, Chen Zhi-Ming, Ren Jie. Chin. Phys. B, 2011, 20(5): 057304.
[11] InP-based evanescently coupled high-responsivity photodiodes with extremely low dark current density integrated diluted waveguide at 1550 nm
Zuo Yu-Hua, Cao Quan, Zhang Yun, Zhang Ling-Zi, Guo Jian-Chuan, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming. Chin. Phys. B, 2011, 20(1): 018504.
[12] The simulation of temperature dependence of responsivity and response time for 6H-SiC UV photodetector
Zhang Yi-Men, Zhou Yong-Hua, Zhang Yu-Ming. Chin. Phys. B, 2007, 16(5): 1276-1279.
[13] Photocurrent properties of high-sensitivity GaN ultraviolet photodetectors
Zhou Jian-Jun, Jiang Ruo-Lian, Sha Jin, Liu Jie, Shen Bo, Zhang Rong, Zheng You-Dou. Chin. Phys. B, 2003, 12(7): 785-788.
No Suggested Reading articles found!