Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 085203    DOI: 10.1088/1674-1056/23/8/085203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation

Liu Tian-Hang, Hao Zuo-Qiang, Gao Xun, Liu Ze-Hao, Lin Jing-Quan
Changchun University of Science and Technology, Changchun 130022, China
Abstract  The propagation of a plasma shock wave generated from an Al target surface ablated by a nanosecond Nd:YAG laser operating at 355 nm in air is investigated at the different focusing positions of the laser beam by using a time-resolved shadowgraph imaging technique. The results show that in the case of a target surface set at the off-focus position, the condition of the focal point behind or in front of the target surface greatly influences the evolution of an Al plasma shock wave, and an ionization channel forms in the case of the focal point set in front of the target surface. Moreover, it is found that the shadowgraph with the evolution time around 100 ns shows that a protrusion appears at the front tip of the shock wave if the focal point is at the target surface. In addition, the calculated results of the expanding velocity of the shock wave front, the mass density, and pressure just behind the shock wave front are presented based on the shadowgraphs.
Keywords:  laser-induced plasma      shock wave      air ionization      off-focus  
Received:  29 November 2013      Revised:  20 May 2014      Published:  15 August 2014
PACS:  52.35.Tc (Shock waves and discontinuities)  
  52.38.-r (Laser-plasma interactions)  
  52.38.Dx (Laser light absorption in plasmas (collisional, parametric, etc.))  
  52.38.Hb (Self-focussing, channeling, and filamentation in plasmas)  
Fund: Project supported by the National Key Basic Research Program, China (Grant No. 2013CB922404), the National Natural Science Foundation of China (Grant Nos. 61178022, 11074027, 11274053, and 11211120156), the Funds from Science and Technology Department of Jilin Province, China (Grant Nos. 20111812 and 20130522149JH), and the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20122216120009, 20122216110007, and 20112216120006).
Corresponding Authors:  Gao Xun, Lin Jing-Quan     E-mail:  lasercust@163.com;linjingquan@cust.edu.cn

Cite this article: 

Liu Tian-Hang, Hao Zuo-Qiang, Gao Xun, Liu Ze-Hao, Lin Jing-Quan Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation 2014 Chin. Phys. B 23 085203

[1] Maher W E, Hall R B, Johnson R R 1974 J. Appl. Phys. 45 2138
[2] Mao S S, Mao X L, Greif R and Russo R E 2000 Appl. Phys. Lett. 77 2464
[3] Villagrán-Muniz M, Sobral H and Camps E 2001 IEEE Trans. Plasma Sci. 29 613
[4] Schönherr T, Nees F, Arakawa Y, Komurasaki K and Herdrich G 2013 Phys. Plasmas 20 033503
[5] Amer E, Gren P and Sjödahl M 2008 J. Phys. D: Appl. Phys. 41 215502
[6] Ma Q L, Motto-Ros V, Laye F, Yu J, Lei W Q, Bai X S, Zheng L J and Zeng H P 2012 J. Appl. Phys. 111 053301
[7] Stauter C, Gérard P, Fontaine J and Engel T 1997 Appl. Surf. Sci. 109/110 174
[8] Zhang Y, Zheng Z Y, Li Y T, Liu F, Li H M, Lu X and Zhang J 2007 Acta Phys. Sin. 56 5931 (in Chinese)
[9] Gravel J F Y and Boudreau D 2009 Spectr. Acta: Part B 64 56
[10] Hu W, Shin Y C and King G 2011 Phys. Plasmas 18 093302
[11] Zeng X Z, Mao X L, Mao S S, Wen S, Greif R and Russo R E 2006 Appl. Phys. Lett. 88 061502
[12] Preuss S, Demchuk A and Stuke M 1995 Appl. Phys. A 61 33
[13] Boueri M, Baudelet M, Yu J, Mao X L, Mao S S and Russo R E 2009 Appl. Surf. Sci. 255 9566
[14] Liu T H, Gao X, Hao Z Q, Liu Z H and Lin J Q 2013 J. Phys. D: Appl. Phys. 46 485207
[15] Harilal S S, Miloshevsky G V, Diwakar P K, LaHaye N L and Hassanein A 2012 Phys. Plasmas 19 083504
[16] Zhang Y, Li Y T, Zheng Z Y, Liu F, Zhong J Y, Lin X X, Liu F, Lu X and Zhang J 2007 Chin. Phys. 16 3728
[17] Zhang N, Zhu X N, Yang J J, Wang X L and Wang M W 2007 Phys. Rev. Lett. 99 167602
[18] Li Y T, Zhang J, Teng H, Li K, Peng X Y, Jin Z, Lu X, Zheng Z Y and Yu Q Z 2003 Phys. Rev. E 67 056403
[19] Zeng X Z, Mao X L, Greif R and Russo R E 2005 Appl. Phys. A 80 237
[20] Sedov L I 1993 Similarity and Dimensional Methods in Mechanics, 10th edn. (Boca Raton: CRC Press) p. 193
[21] Sedov L I 1993 Similarity and Dimensional Methods in Mechanics, 10th edn. (Boca Raton: CRC Press) p. 261
[1] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[2] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[3] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[4] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[5] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
[6] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[7] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[8] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[9] Enhanced laser-induced plasma channels in air
Yanlei Zuo(左言磊), Xiaofeng Wei(魏晓峰), Kainan Zhou(周凯南), Xiaoming Zeng(曾小明),Jingqin Su(粟敬钦), Zhihong Jiao(焦志宏), Na Xie(谢娜), Zhaohui Wu(吴朝辉). Chin. Phys. B, 2016, 25(3): 035203.
[10] Laser-driven flier impact experiments at the SG-III prototype laser facility
Shui Min, Chu Gen-Bai, Xin Jian-Ting, Wu Yu-Chi, Zhu Bin, He Wei-Hua, Xi Tao, Gu Yu-Qiu. Chin. Phys. B, 2015, 24(9): 094701.
[11] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue, Wang Xiang-Da, Liu Xiao-Zhou, Gong Xiu-Fen. Chin. Phys. B, 2015, 24(1): 014301.
[12] Mitigation of energetic ion debris from Gd plasma using dual laser pulses and the combined effect with ambient gas
Dou Yin-Ping, Sun Chang-Kai, Liu Chao-Zhi, Gao Jian, Hao Zuo-Qiang, Lin Jing-Quan. Chin. Phys. B, 2014, 23(7): 075202.
[13] Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma
Li Jing, Pei Min-Jie, Qi Da-Long, Qi Ying-Peng, Yang Yan, Sun Zhen-Rong. Chin. Phys. B, 2014, 23(12): 124209.
[14] The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2013, 22(5): 055202.
[15] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao. Chin. Phys. B, 2013, 22(12): 124102.
No Suggested Reading articles found!