Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077105    DOI: 10.1088/1674-1056/23/7/077105

Influence of temperature on strain-induced polarization Coulomb field scattering in AlN/GaN heterostructure field-effect transistors

Lü Yuan-Jiea, Feng Zhi-Honga, Lin Zhao-Junb, Guo Hong-Yua, Gu Guo-Donga, Yin Jia-Yuna, Wang Yuan-Ganga, Xu Penga, Song Xu-Boa, Cai Shu-Juna
a National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China;
b School of Physics, Shandong University, Jinan 250100, China
Abstract  Electron mobility scattering mechanism in AlN/GaN heterostuctures is investigated by temperature-dependent Hall measurement, and it is found that longitudinal optical phonon scattering dominates electron mobility near room temperature while the interface roughness scattering becomes the dominant carrier scattering mechanism at low temperatures (~ 100 K). Based on measured current-voltage characteristics of prepared rectangular AlN/GaN heterostructure field-effect transistor under different temperatures, the temperature-dependent variation of electron mobility under different gate biases is investigated. The polarization Coulomb field (PCF) scattering is found to become an important carrier scattering mechanism after device processing under different temperatures. Moreover, it is found that the PCF scattering is not generated from the thermal stresses, but from the piezoelectric contribution induced by the electrical field in the thin AlN barrier layer. This is attributed to the large lattice mismatch between the extreme thinner AlN barrier layer and GaN, giving rise to a stronger converse piezoelectric effect.
Keywords:  AlN/GaN      electron mobility      polarization Coulomb field scattering      polarization  
Received:  24 October 2013      Revised:  14 January 2014      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  77.22.Ej (Polarization and depolarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61306113 and 11174182).
Corresponding Authors:  Feng Zhi-Hong     E-mail:
About author:  71.55.Eq; 72.20.Fr; 72.10.-d; 77.22.Ej

Cite this article: 

Lü Yuan-Jie, Feng Zhi-Hong, Lin Zhao-Jun, Guo Hong-Yu, Gu Guo-Dong, Yin Jia-Yun, Wang Yuan-Gang, Xu Peng, Song Xu-Bo, Cai Shu-Jun Influence of temperature on strain-induced polarization Coulomb field scattering in AlN/GaN heterostructure field-effect transistors 2014 Chin. Phys. B 23 077105

[1] Medjdoub F, Zegaoui M, Ducatteaux D, Rolland N and Rolland P A 2011 IEEE Electron Dev. Lett. 32 874
[2] Ji D, Liu B, Lu Y W, Zou M and Fan B L 2012 Chin. Phys. B 21 067201
[3] Shinohara K, Regan D, Corrion A, Brown D, Tang Y, Wong J, Candia G, Schmitz A, Fung H, Kim S and Micovic M 2012 IEDM Tech. Dig. 27 617
[4] Zhao J Z, Lin Z J, Corrigan T D, Wang Z, You Z D and Wang Z G 2007 Appl. Phys. Lett. 91 173507
[5] Lü Y J, Feng Z H, Cai S J, Dun S B, Liu B, Yin J Y, Zhang X W, Fang Y L, Lin Z J, Meng L G and Luan C B 2013 Chin. Phys. B 22 067104
[6] Pandey S, Cavalcoli D, Minj A, Fraboni B, Cavallini A, Skuridina D, Vogt P and Kneissl M 2012 Acta Mater. 60 3176
[7] Cao Y and Jena D 2007 Appl. Phys. Lett. 90 182112
[8] Lü Y J, Feng Z H, Han T T, Dun S B, Gu G D, Yin J Y, Sheng B C, Liu B, Fang Y L, Cai S J, Lin Z J, Luan C B and Yang Q H 2013 Appl. Phys. Lett. 103 113502
[9] Ridley B K, Foutz B E and Eastman L F 2000 Phys. Rev. B 61 16862
[10] Lü Y J, Lin Z J, Zhang Y, Meng L G, Cao Z F, Luan C B, Chen H and Wang Z G 2011 Chin. Phys. B 20 047105
[11] Lü Y J, Lin Z J, Zhang Y, Meng L M, Luan C B, Cao Z F, Chen H and Wang Z G 2011 Appl. Phys. Lett. 98 123512
[12] Ancona M G 2012 IEDM Tech. Dig. 13 315
[1] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[2] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[3] Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 058501.
[4] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[5] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[6] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[7] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[8] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[9] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[10] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[11] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[12] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[13] Nonparaxial propagation of radially polarized chirped Airy beams in uniaxial crystal orthogonal to the optical axis
Yaohui Chen(陈耀辉), Lixun Wu(吴理汛), Zhixiong Mo(莫智雄), Lican Wu(吴利灿), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(1): 014204.
[14] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[15] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
No Suggested Reading articles found!