Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064219    DOI: 10.1088/1674-1056/23/6/064219

Reverse electric field Monte Carlo simulation for vector radiative transfer in the atmosphere

Li Xu-You, Sun Bo, Yu Ying-Ying
College of Automation, Harbin Engineering University, Harbin 150001, China
Abstract  In this paper, a reverse electric field Monte Carlo (REMC) method is proposed to study the vector radiation transfer in the atmosphere. The REMC is based on tracing the multiply scattered electric field to simulate the vector transmitted radiance. The reflected intensities with different total optical depth values are obtained, which accord well with the results in the previous research. Stokes vector and the degree of polarization are numerically investigated. The simulation result shows that when the solar zenith angle is determined, the zenith angle of detector has two points, of which the degree of polarization does not change with the ground albedo and the optical depth. The two points change regularly with the solar zenith angle. Moreover, our REMC method can be applied to the vector radiative transfer in the atmosphere-ocean system.
Keywords:  radiative transfer      Monte Carlo      atmosphere scattering      polarization  
Received:  24 June 2013      Revised:  31 October 2013      Published:  15 June 2014
PACS:  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  05.10.Ln (Monte Carlo methods)  
  42.68.Mj (Scattering, polarization)  
  42.25.Ja (Polarization)  
Fund: Project supported by the Specific Scientific and Technological Cooperation Between China and Russia (Grant No. 2010DFR80140).
Corresponding Authors:  Sun Bo     E-mail:

Cite this article: 

Li Xu-You, Sun Bo, Yu Ying-Ying Reverse electric field Monte Carlo simulation for vector radiative transfer in the atmosphere 2014 Chin. Phys. B 23 064219

[1] Ramella-Roman J, Prahl S and Jacques S 2005 Opt. Express 13 4420
[2] Ramella-Roman J, Prahl S and Jacques S 2005 Opt. Express 13 10392
[3] Masrour R, Bahmad L and Benyoussef A 2013 Chin. Phys. B 22 057504
[4] Xu Y D, Liu Q Q and Deng Y J 2012 Chin. Phys. B 21 070211
[5] He B, Wang J G and Liu C L 2013 Chin. Phys. B 22 073101
[6] Plass G N, Kattawar G W and Catchings F E 1973 Appl. Opt. 12 314
[7] Kattawar G W 2013 Appl. Opt. 52 940
[8] Adams C N and Kattawar G W 1978 Icarus. 35 139
[9] Fischer J and Grassl H. 1984 Appl. Opt. 23 1032
[10] Modest M F 2001 Backward Monte Carlo Simulations in Radiative Heat Transfer (Pennsylvania: Penn State University)
[11] Xu M 2004 Opt. Express 12 6530
[12] Hayakawa C K, Potma E O and Venugopalan V 2011 Biomed. Opt. Express 2 278
[13] Yun T, Zeng N, Li W, Li D, Jiang X and Ma H 2009 Opt. Express 17 16590
[14] Chu J K, Zhao K C, Zhang Q and Wang T C 2007 International Conference on Mechatronics and Automation, August 5, 2007, Harbin, China, p. 3161
[15] Duan M Z and Guo X 2009 Acta. Phys. Sin. 58 1353 (in Chinese)
[16] Chowdhary J, Cairns B and Travis L D 2006 Appl. Opt. 45 5542
[17] Sun B, Wang H, Sun X B, S, Hong J and Zhang Y J 2012 Chin. Phys. B 21 129501
[18] Sawicki J, Kastor N and Xu M 2008 Opt. Express 16 5728
[19] Basri R and Jacobs D W 2003 Pattern Analysis and Machine Intelligence 25 218
[20] Zhai P W, Kattawar G W and Yang P 2008 Appl. Opt. 47 1037
[21] Roberti L 1997 Appl. Opt. 36 7929
[22] Kattawar G W and Adams C N 1970 J. Quant. Spectrosc. Radiar. Transfer 10 341
[23] Wang L H and Steven L J 1992 Monte Carlo Modeling of Light Transport in Multi-layered Tissues in Standard C (Vol. 1) (Houston: M. D. Anderson Cancer Center Press) pp. 1-173
[24] Elterman L 1968 Air Force Cambridge Research Labs Hanscom AFB MA 68 0153
[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[3] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[4] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[5] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[6] Nonparaxial propagation of radially polarized chirped Airy beams in uniaxial crystal orthogonal to the optical axis
Yaohui Chen(陈耀辉), Lixun Wu(吴理汛), Zhixiong Mo(莫智雄), Lican Wu(吴利灿), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(1): 014204.
[7] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[8] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[9] Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating
Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2020, 29(8): 084208.
[10] Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution
Cheng-Bin Liang(梁成斌), Yan-Rong Song(宋晏蓉), Zi-Kai Dong(董自凯), Yun-Feng Wu(吴云峰), Jin-Rong Tian(田金荣), Run-Qin Xu(徐润亲). Chin. Phys. B, 2020, 29(7): 074206.
[11] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[12] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[13] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[14] Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy
Lan Yang(杨岚), Miao Liu(刘淼), Yi-Tong Liu(刘奕彤), Qing-Xue Li(李庆雪), Su-Yu Li(李苏宇), Yuan-Fei Jiang(姜远飞), An-Min Chen(陈安民), Ming-Xing Jin(金明星). Chin. Phys. B, 2020, 29(6): 065203.
[15] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
No Suggested Reading articles found!