Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 063103    DOI: 10.1088/1674-1056/23/6/063103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical studies on a series of nitroaliphatic energetic compounds

Zeng Hui, Zhao Jun
School of Physical Science and Technology, Yangtze University, Jingzhou 434023, China
Abstract  Density functional theory calculations at the B3LYP/6-311G** level are performed to study the geometric and electronic structures of a series of nitroaliphatic compounds. The heats of formation (HOF) are predicted through the designed isodesmic reactions. Thermal stabilities are evaluated via the homolytic bond dissociation energies (BDEs). Further, the correlation is developed between impact sensitivity h50% and the ratio (BDE/E) of the weakest BDE to the total energy E containing zero point energy correction. In addition, the relative stability of the title compounds is evaluated based on the analysis of calculated Mulliken population and the energy gaps between the frontier orbitals. The calculated BDEs, HOFs, and energy gaps consistently indicate that compound 1,1,1,6,6,6-hexanitro-3-hexyne is the most unstable and the compound 3,3,4,4,-tetranitro-hexane is the most stable. These results provide basic information for the molecular design of novel high energetic density materials.
Keywords:  density functional theory      heats of formation      bond dissociation energy      isodesmic reaction  
Received:  11 September 2013      Revised:  03 December 2013      Published:  15 June 2014
PACS:  31.15.E-  
  82.60.Cx (Enthalpies of combustion, reaction, and formation)  
  33.15.Fm (Bond strengths, dissociation energies)  
  82.20.-w (Chemical kinetics and dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304022 and11347010), the Research Foundation of Education Bureau of Hubei Province, China (Grant Nos. Q20131208, T201204, and XD2014069), the Foundation of Yangtze University for Outstanding Young Teachers, China (Grant Nos. cyq201321 and cyq201322), and the Project for Basic Subjects (Grant No. 2013cjp10).
Corresponding Authors:  Zhao Jun     E-mail:  zhaojun@yangtzeu.edu.cn

Cite this article: 

Zeng Hui, Zhao Jun Theoretical studies on a series of nitroaliphatic energetic compounds 2014 Chin. Phys. B 23 063103

[1] Sikder A K and Sikder N 2004 J. Hazard. Mater. 112 1
[2] Sikder A K, Maddalla G, Agraval J P and Singh H 2001 J. Hazard. Mater. A 84 1
[3] Li Y F, Fan X W, Wang Z Y and Ju X H 2009 J. Mol. Struct. (Theochem) 896 96
[4] Pople J A, Luke B T, Frisch M J and Binkley J S 1985 J. Phys. Chem. 89 2198
[5] Fan X W and Ju X H 2008 J. Comput. Chem. 29 505
[6] Ju X H, Wang X and Bei F L 2005 J. Comput. Chem. 26 1263
[7] Chen Z X, Xiao J M, Xiao H M and Chiu Y N 1999 J. Phys. Chem. A 103 8062
[8] Xiao H M and Chen Z X 2000 The Modern Theory for Tetrazole Chemistry (Beijing: Science Press)
[9] Xiang H E and Wang F 2006 Chin. Phys. Lett. 23 1738
[10] Luo Y H, Ge G X and Jing Q URL:http://wulixb.iphy.ac.cn/CN/Y2009/V58/I12/82362009 Acta Phys. Sin. 58 8236 (in Chinese)
[11] He B, Shao J X and Cheng X L 2006 Chin. Phys. 15 329
[12] Ge G X, Yang Z Q and Cao H B 2009 Acta Phys. Sin. 58 6128 (in Chinese)
[13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[14] Zhao J, Xu D H and Cheng X L 2010 Struct. Chem. 21 1235
[15] Coburn M D 1977 "Ammonium 2,4,5-trinitroimidazole", Los Alamos, New Mexico, USA, U.S. Patent 4028154
[16] Cho S G, Park B S and Cho J R 1999 Propel. Explos. Pyrotech. 24 343
[17] Politzer P, Laurence P R, Abrahmsen L, Zilles B A and Sjoberg P 1984 Chem. Phys. Lett. 111 75
[18] Murray J S and Politzer P 1990 J. Mol. Struct. (Theochem) 209 163
[19] Zhang S W and Truong T N 2000 J. Phys. Chem. A 104 7304
[20] Owens F J 1996 J. Mol. Struct. (Theochem) 370 11
[21] Rice B M, Sahu S and Owens F J 2002 J. Mol. Struct. (Theochem) 583 69
[22] Zhao Q, Zhan S and Li Q S 2005 Chem. Phys. Lett. 407 105
[23] Johnson M A and Truong T N 1999 J. Phys. Chem. A 103 8840
[24] Mohammad H K, Bahman E S and Ali H 2011 J. Hazard. Mater. 185 1086
[25] Mohammad H K and Hamid R P 2009 J. Hazard. Mater. 169 158
[26] Mohammad H K 2007 J. Hazard. Mater. 143 437
[27] Mohammad H K 2007 J. Hazard. Mater. 148 648
[28] Mohammad H K 2011 J. Hazard. Mater. 190 330
[29] Frisch M J, Trucks G W, Schlegel H B, et al., GAUSSIAN 03, Revision B.02, Gaussian, Inc., Pittsburgh, PA
[30] Lee K Y, Storm C B, Hiskey M A and Coburn M D 1991 J. Energ. Mater. 9 415
[31] Galvez-Ruiz J C, Holl G, Karaghiosoff K, Klapotke T M, Lohnwitz K, Mayer P, Noth H, Polborn K, Christoph J R, Suter M and Jan J W 2005 Inorg. Chem. 44 4238
[32] Perdew J P 1997 Phys. Rev. Lett. 78 1396
[33] Hahre W J, Radom L and Schleyer P V R 1986 Ab Initio Molecular Orbital Theory (New York: Wiley)
[34] Chen P C, Chieh Y C and Tzeng S C 2003 J. Mol. Struct. (Theochem) 634 215
[35] Linstrom P J and Mallard W G (eds.) 2005 NIST Chemistry WebBook, NIST Standard Reference Database, Number 69, National Institute Standards and Technology, Gaithersburg, MD, http://webbook.nist.gov/chemistry/
[36] Cobos C J 2005 J. Mol. Struct. (Theochem) 714 147
[37] Bozzelli J W, Rajasekaran I and Hur J 2005 J. Phys. Org. Chem. 192 93
[38] Ju X H, Li Y M and Xiao H M 2005 J. Phys. Chem. A 109 934
[39] Bozzelli J W and Rajasekaran I 2007 J. Phys. Chem. Ref. Data 36 663
[40] Abou-Rachid H, Song Y, Hu A, Dudiy S, Zybin S V and Goddard III W A 2008 J. Phys. Chem. A 112 11914
[41] Benson S W 1976 Thermochemical Kinetics, 2nd edn. (New York: Wiley-Interscience)
[42] Chung G S, Schimidt M W and Gordon M S 2000 J. Phys. Chem. A 104 5647
[43] Storm G B, Stine J R and Kramer J F 1990 "Sensitivity Relationships in Energetic Materials", in: Bulusu S N ed. Chemistry and Physics of Energetic Materials (Netherlands: Kluwer Academic Publishers) p. 605
[44] Song X S, Cheng X L, Yang X D and He B 2006 Propellants. Explos. Pyrotech. 31 306
[45] Song X S, Cheng X L, Yang X D, Li D H and Linhu R F 2008 J. Hazard. Mater. 150 317
[46] Li X H, Zhang R Z and Zhang X Z. 2010 J. Hazard. Mater. 183 622
[47] Su X F, Cheng X L, Meng C M and Yuan X L 2009 J. Hazard. Mater. 161 551
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=\,Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[6] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[7] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[8] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[9] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[10] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[11] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[12] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[13] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[14] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[15] Computational screening of doping schemes forLiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
No Suggested Reading articles found!