Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 054209    DOI: 10.1088/1674-1056/23/5/054209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-component optical azimuthons of four-wave mixing

Wang Rui-Min, Wang Xing-Peng, Wu Zhen-Kun, Yao Xin, Zhang Yi-Qi, Zhang Yan-Peng
School of Science & Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of InformationPhotonic Technique, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  We report the multi-component optical azimuthons of four-wave mixing (FWM) composed of several modulated vortex beams, the so-called azimuthons, in V-type three-level and two-level atomic systems. We analyze the formation mechanisms of the FWM azimuthons theoretically and experimentally. In addition, we illustrate the interactions between the co-propagating azimuthon components. Finally, we also compare the stabilities of azimuthons in V-type three-level and two-level atomic systems.
Keywords:  nonlinear optics      four-wave mixing      Kerr effect     
Received:  22 September 2013      Published:  15 May 2014
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921804), the National Natural Science Foundation of China (Grant Nos. 61308015, 11104214, 61108017, 11104216, and 61205112), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20110201110006 and 20110201120005), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 2012jdhz05, 2011jdhz07, xjj2011083, xjj2011084, xjj2012080, and xjj2013089), and China Postdoctoral Science Foundation (Grant No. 2012M521773).
Corresponding Authors:  Zhang Yan-Peng     E-mail:  ypzhang@mail.xjtu.edu.cn
About author:  42.65.-k; 42.65.Tg; 42.65.Jx

Cite this article: 

Wang Rui-Min, Wang Xing-Peng, Wu Zhen-Kun, Yao Xin, Zhang Yi-Qi, Zhang Yan-Peng Multi-component optical azimuthons of four-wave mixing 2014 Chin. Phys. B 23 054209

[1] Desyatnikov A S, Kivshar Y S and Torner L 2005 Prog. Opt. 47 291
[2] He Y J, Malomed B A and Wang H Z 2007 Opt. Express 15 17502
[3] Desyatnikov A S, Sukhorukov A A and Kivshar Y S 2005 Phys. Rev. Lett. 95 203904
[4] Zhang Y, Skupin S, Maucher F, Pour A G, Lu K and Krolikowski W 2010 Opt. Express 18 27846
[5] Li J, Wang D S, Wu Z Y, Yu Y M and Liu W M 2012 Phys. Rev. A 86 023628
[6] Zhang Y P, Nie Z Q, Zhao Y, Li C B, Wang R M, Si J H and Xiao M 2010 Opt. Express 18 10963
[7] Zhuang Y M, Sang S L, Li P Y, Yuan C Z, Huo S L, Xue X X, Wang Z G, Zheng H B and Zhang Y P 2012 Chin. Phys. B 21 024204
[8] Wang R M, Wu Z K, Zhang Y Q, Zhang Z Y, Yuan C Z, Zheng H B, Li Y Y, Zhang J H and Zhang Y P 2012 Opt. Express 20 14168
[9] Zhao Y, Nie Z Q, Zhang Y P, Gan C L, Zheng H B, Li Y Y and Lu K Q 2009 Chin. Phys. B 18 2340
[10] Michinel H and Paz-Alonso M 2006 Phys. Rev. Lett. 96 023903
[11] Skupin S, Saffman M and Krolikowski W 2007 Phys. Rev. Lett. 98 263902
[12] Yang W X, Chen A X, Lee R K and Wu Y 2011 Phys. Rev. A 84 013835
[13] Lederer F, Stegeman G I, Christodoulides D N, Assanto G, Segev M and Silberberg Y 2008 Phys. Rep. 463 1
[14] Chen W C, Xie J N, Lu H and Xu W C 2003 Chin. Phys. Lett. 20 1286
[15] Musslimani Z H, Soljacic M, Segev M and Christodoulides D N 2001 Phys. Rev. E 63 066608
[16] Desyatnikov A S and Kivshar Y S 2001 Phys. Rev. Lett. 87 033901
[17] Salgueiro J R and Kivshar Y S 2004 Phys. Rev. E 70 056613
[18] Liu X M, Zhou X Q and Lu C 2005 Phys. Rev. A 72 013811
[19] Liu X M 2008 Phys. Rev. A 77 043818
[20] Masajada J and Dubik B 2001 Opt. Commun. 198 21
[21] Liu J S, Hao Z H 2002 Chin. Phys. 11 0254
[22] Carlsson A H, Malmberg J N, Anderson D, Lisak M, Ostrovskaya E A, Alexander T J and Kivshar Y S 2000 Opt. Lett. 25 660
[1] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[2] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[3] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[4] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[5] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[6] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[7] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[8] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[9] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[10] Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene
Qi You(游琪), Leyong Jiang(蒋乐勇), Xiaoyu Dai(戴小玉), Yuanjiang Xiang(项元江). Chin. Phys. B, 2018, 27(9): 094211.
[11] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[12] Modulation and mechanism of ultrafast transient spectroscopy based on dimethylamino-carbaldehyde derivatives
Tong-xing Jin(金桐兴), Jun-yi Yang(杨俊义), Yu Fang(方宇), Yan-bing Han(韩艳兵), Ying-lin Song(宋瑛林). Chin. Phys. B, 2018, 27(5): 054208.
[13] Nonlinear spectral cleaning effect in cross-polarized wave generation
Linpeng Yu(於林鹏), Yi Xu(许毅), Fenxiang Wu(吴分翔), Xiaojun Yang(杨晓骏), Zongxin Zhang(张宗昕), Yuanfeng Wu(吴圆峰), Yuxin Leng(冷雨欣), Zhizhan Xu(徐至展). Chin. Phys. B, 2018, 27(5): 054214.
[14] On the nonclassical dynamics of cavity-assisted four-channel nonlinear coupler
Rafael Julius, Abdel-Baset M A Ibrahim, Pankaj Kumar Choudhury, Hichem Eleuch. Chin. Phys. B, 2018, 27(11): 114206.
[15] Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion
Xiaohong Hu(胡晓鸿), Wei Zhang(张伟), Yuanshan Liu(刘元山), Ye Feng(冯野), Wenfu Zhang(张文富), Leiran Wang(王擂然), Yishan Wang(王屹山), Wei Zhao(赵卫). Chin. Phys. B, 2017, 26(7): 074216.
No Suggested Reading articles found!