Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047806    DOI: 10.1088/1674-1056/23/4/047806
Special Issue: TOPICAL REVIEW — Plasmonics and metamaterials
TOPICAL REVIEW—Plasmonics and metamaterials Prev   Next  

Control of light scattering by nanoparticles with optically-induced magnetic responses

Liu Wei, Andrey E. Miroshnichenko, Yuri S. Kivshar
a College of Optoelectronic Science and Engineering, National University of Defence Technology, Changsha 410073, China;
b Nonlinear Physics Center and Center for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia
Abstract  Conventional approaches to control and shape the scattering patterns of light generated by different nanostructures are mostly based on engineering of their electric response due to the fact that most metallic nanostructures support only electric resonances in the optical frequency range. Recently, fuelled by the fast development in the fields of metamaterials and plasmonics, artificial optically-induced magnetic responses have been demonstrated for various nanostructures. This kind of response can be employed to provide an extra degree of freedom for the efficient control and shaping of the scattering patterns of nanoparticles and nanoantennas. Here we review the recent progress in this research direction of nanoparticle scattering shaping and control through the interference of both electric and optically-induced magnetic responses. We discuss the magnetic resonances supported by various structures in different spectral regimes, and then summarize the original results on the scattering shaping involving both electric and magnetic responses, based on the interference of both spectrally separated (with different resonant wavelengths) and overlapped dipoles (with the same resonant wavelength), and also other higher-order modes. Finally, we discuss the scattering control utilizing Fano resonances associated with the magnetic responses.
Keywords:  optically-induced magnetic response      scattering control      Mie resonance      Fano resonance  
Received:  18 November 2013      Revised:  20 February 2014      Accepted manuscript online: 
PACS:  78.67.&ndash  
  n  
  42.25.Fx (Diffraction and scattering)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the Australian Research Council Center of Excellence for Ultrahigh Bandwidth Devices for Optical Systems (Grant No. CE110001018) and the Future Fellowship (Grant No. FT110100037).
Corresponding Authors:  Yuri S. Kivshar     E-mail:  ysk124@physics.anu.edu.au
About author:  78.67.–n; 42.25.Fx; 73.20.Mf

Cite this article: 

Liu Wei, Andrey E. Miroshnichenko, Yuri S. Kivshar Control of light scattering by nanoparticles with optically-induced magnetic responses 2014 Chin. Phys. B 23 047806

[1] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley)
[2] Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J and West J L 2003 Proc. Natl. Acad. Sci. USA 100 13549
[3] Atwater H A and Polman A 2010 Nat. Mater. 9 865
[4] Huschka R, Zuloaga J, Knight M W, Brown L V, Nordlander P and Halas N J 2011 J. Am. Chem. Soc. 133 12247
[5] Ruan Z and Fan S 2009 J. Phys. Chem. C 114 7324
[6] Ruan Z C and Fan S H 2010 Phys. Rev. Lett. 105 013901
[7] Alu A and Engheta N 2009 Phys. Rev. Lett. 102 233901
[8] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[9] Ni X J, Emani N K, Kildishev A V, Boltasseva A and Shalaev V M 2012 Science 335 427
[10] Miroshnichenko A E, Luk'yanchuk B, Maier S A and Kivshar Y S 2012 ACS Nano 6 837
[11] Zhang Y, Grady N K, Ayala-Orozco C and Halas N J 2011 Nano Lett. 11 5519
[12] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[13] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[14] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[15] Gorodetski Y, Nechayev S, Kleiner V and Hasman E 2010 Phys. Rev. B 82 125433
[16] Grigorenko A N, PoliniMand Novoselov K S 2012 Nat. Photon. 6 749
[17] Yin X B, Ye Z L, Rho J, Wang Y and Zhang X 2013 Science 339 1405
[18] Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H and Shvets G 2013 Nat. Mater. 12 233
[19] Liu W 2013 Light Manipulation by Plasmonic Nanostructuresz Ph. D. thesis (Australian National University)
[20] Hafezi M, Demler E A, Lukin M D and Taylor J M 2011 Nat. Phys. 7 907
[21] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and van Hulst N F 2010 Science 329 930
[22] Novotny L and van Hulst N 2011 Nat. Photon. 5 83
[23] Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A and Zayats A V 2009 Nat. Mater. 8 867
[24] Spinelli P, Verschuuren M A and Polman A 2012 Nat. Commun. 3 692
[25] Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P and Xu H X 2009 Nano Lett. 9 4383
[26] Shegai T, Miljkovic V D, Bao K, Xu H X, Nordlander P, Johansson P and Kall M 2011 Nano Lett. 11 706
[27] Aouani H, Mahboub O, Bonod N, Devaux E, Popov E, Rigneault H, Ebbesen T W and Wenger J 2011 Nano Lett. 11 637
[28] Rui G H, Nelson R L and Zhan Q W 2011 Opt. Lett. 36 4533
[29] Love A W 1976 Radio. Sci. 11 671
[30] Kerker M, Wang D S and Giles C L 1983 J. Opt. Soc. Am. 73 765
[31] Nieto-Vesperinas M, Saenz J J, Gomez-Medina R and Chantada L 2010 Opt. Express 18 11428
[32] Garcia-Camara B, Moreno F, Gonzalez F and Martin O J F 2010 Opt. Express 18 10001
[33] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE. Trans. Microw. Theory 47 2075
[34] Cai W and Shalaev V M 2010 Optical Metamaterials: Fundamentals and Applications (New York: Springer)
[35] Soukoulis C M and Wegener M 2011 Nat. Photon. 5 523
[36] Zhao Q, Zhou J, Zhang F and Lippens D 2009 Mat. Today 12 60
[37] Zheludev N I and Kivshar Y S 2012 Nat. Mater. 11 917
[38] Peng L, Ran L, Chen H, Zhang H, Kong J A and Grzegorczyk T M 2007 Phys. Rev. Lett. 98 157403
[39] Schuller J A, Zia R, Taubner T and Brongersma M L 2007 Phys. Rev. Lett. 99 107401
[40] Vynck K, Felbacq D, Centeno E, Cabuz A I, Cassagne D and Guizal B 2009 Phys. Rev. Lett. 102 133901
[41] Evlyukhin A B, Reinhardt C, Seidel A, Luk'yanchuk B S and Chichkov B N 2010 Phys. Rev. B 82 045404
[42] Paniagua-Dominguez R, Lopez-Tejeira F, Marques R and Sanchez-Gil J A 2011 New J. Phys. 13 123017
[43] Garcia-Etxarri A, Gomez-Medina R, Froufe-Perez L S, Lopez C, Chantada L, Scheffold F, Aizpurua J, Nieto-VesperinasMand Saenz J J 2011 Opt. Express 19 4815
[44] Kuznetsov A I, Miroshnichenko A E, Fu Y H, Zhang J B and Lukyanchuk B S 2012 Sci. Rep. 2 492
[45] Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I and Chichkov B N 2012 Nano Lett. 12 3749
[46] Fan P Y, Chettiar U K, Cao L Y, Afshinmanesh F, Engheta N and Brongersma M L 2012 Nat. Photon. 6 380
[47] Paniagua-Dominguez R, Abujetas D R and Sanchez-Gil J A 2013 Sci. Rep. 3 1057
[48] Kuznetsov A I, Miroshnichenko A E, Fu Y H, Viswanathan V, Rahmani M, Valuckas V, Kivshar Y, Pickard D S and Lukiyanchuk B 2013 arXiv: 1309.7106
[49] Wu C, Arju N, Kelp G, Fan J A, Dominguez J, Gonzales E, Tutuc E, Brener I and Shvets G 2013 arXiv: 1309.6616
[50] Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P and Valentine J 2013 Nat. Photon. 7 791
[51] Jin P and Ziolkowski R W 2010 IEEE Antennas Wirel. Propag. Lett. 9 501
[52] Gomez-Medina R, Garcia-Camara B, Suarez-Lacalle I, Gonzalez F, Moreno F, Nieto-Vesperinas M and Saenz J J 2011 J. Nanophotonics 5 053512
[53] Liu W, Miroshnichenko A E, Neshev D N and Kivshar Y S 2012 ACS Nano 6 5489
[54] Hancu I M, Curto A G, Castro-López M, Kuttge M and van Hulst N F 2013 Nano Lett. 14 166
[55] Poutrina E, Rose A, Brown D, Urbas A and Smith D R 2013 Opt. Express 21 31138
[56] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[57] Zhang S, Fan W, Panoiu N, Malloy K, Osgood R and Brueck S 2005 Phys. Rev. Lett. 95 137404
[58] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G and Zhang X 2008 Nature 455 376
[59] Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P and Kildishev A V 2005 Opt. Lett. 30 3356
[60] Dolling G, Enkrich C, Wegener M, Zhou J, Soukoulis C M and Linden S 2005 Opt. Lett. 30 3198
[61] Alu A and Engheta N 2009 Opt. Express 17 5723
[62] Shafiei F, Monticone F, Le K Q, Liu X X, Hartseld T, Alù A and Li X 2013 Nat. Nanotechnol. 8 95
[63] Popa B I and Cummer S A 2008 Phys. Rev. Lett. 100 207401
[64] Zhao Q, Kang L, Du B, Zhao H, Xie Q, Huang X, Li B, Zhou J and Li L 2008 Phys. Rev. Lett. 101 027402
[65] Ginn J C, Brener I, Peters D W, Wendt J R, Stevens J O, Hines P F, Basilio L I, Warne L K, Ihlefeld J F and Clem P G 2012 Phys. Rev. Lett. 108 097402
[66] Shi L, Tuzer T U, Fenollosa R and Meseguer F 2012 Adv. Mater. 24 5934
[67] Shi L, Harris J T, Fenollosa R, Rodriguez I, Lu X, Korgel B A and Meseguer F 2013 Nat. Commun. 4 1904
[68] Albella P, Poyli M A, Schmidt M K, Maier S A, Moreno F, Sáenz J J and Aizpurua J 2013 J. Phys. Chem. C 117 13573
[69] Coenen T, van de Groep J and Polman A 2013 ACS Nano 7 1689
[70] Geffrin J M, Garcia-Camara B, Gomez-Medina R, Albella P, Froufe-Perez L S, Eyraud C, Litman A, Vaillon R, Gonzalez F, Nieto-Vesperinas M, Saenz J J and Moreno F 2012 Nat. Commun. 3 1171
[71] Person S, Jain M, Lapin Z, Sáenz J J, Wicks G and Novotny L 2013 Nano Lett. 13 1806
[72] Fu Y H, Kuznetsov A I, Miroshnichenko A E, Yu Y F and Lukyanchuk B 2013 Nat. Commun. 4 1527
[73] Filonov D S, Krasnok A E, Slobozhanyuk A P, Kapitanova P V, Nenasheva E A, Kivshar Y S and Belov P A 2012 Appl. Phys. Lett. 100 201113
[74] Krasnok A E, Miroshnichenko A E, Belov P A and Kivshar Y S 2012 Opt. Express 20 20599
[75] Rolly B, Stout B and Bonod N 2012 Opt. Express 20 20376
[76] Alu A and Engheta N 2010 J. Nanophotonics 4 041590
[77] Liu W, Miroshnichenko A E, Oulton R F, Neshev D N, Hess O and Kivshar Y S 2013 Opt. Lett. 38 2621
[78] Yang C N 2012 Phys. Today 65 33
[79] Staude I, Miroshnichenko A E, Decker M, Fofang N T, Liu S, Gonzales E, Dominguez J, Luk T S, Neshev D N, Brener I and Kivshar Y 2013 ACS Nano 7 7824
[80] Evlyukhin A B, Reinhardt C and Chichkov B N 2011 Phys. Rev. B 84 235429
[81] Krasnok A, Filonov D, Slobozhanyuk A, Simovski C, Belov P and Kivshar Y 2013 arXiv: 1307.4601
[82] Rolly B, Abdeddaim R, Geffrin J M, Stout B and Bonod N 2013 Sci. Rep. 3 3063
[83] Fano U 1961 Phys. Rev. 124 1866
[84] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[85] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[86] Hopkins B, Liu W, Miroshnichenko A E and Kivshar Y S 2013 Nanoscale 5 6395
[87] Hopkins B, Poddubny A N, Miroshnichenko A E and Kivshar Y S 2013 Phys. Rev. A 88 053819
[88] Rybin M V, Kapitanova P V, Filonov D S, Slobozhanyuk A P, Belov P A, Kivshar Y S and Limonov M F 2013 Phys. Rev. B 88 205106
[89] Liu W, Miroshnichenko A E, Neshev D N and Kivshar Y S 2012 Phys. Rev. B 86 081407
[90] Miroshnichenko A E and Kivshar Y S 2012 Nano Lett. 12 6459
[91] Chen H, Shao L, Man Y C, Zhao C, Wang J and Yang B 2012 Small 8 1503
[92] Yang Z J, Wang Q Q and Lin H Q 2013 Appl. Phys. Lett. 103 111115
[93] Markel V A 2005 J. Phys. B. Mol. Opt. 38 L115
[94] Zhang J and Zayats A 2013 Opt. Express 21 8426
[95] Berry M V 1987 J. Mod. Opt. 34 1401
[96] Franke-Arnold S, Allen L and Padgett M 2008 Laser Photon. Rev. 2 299
[97] Zambrana-Puyalto X, Vidal X and Molina-Terriza G 2012 Opt. Express 20 24536
[98] Bliokh K Y, Niv A, Kleiner V and Hasman E 2008 Nat. Photon. 2 748
[99] Hosten O and Kwiat P 2008 Science 319 787
[100] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[101] Miroshnichenko A E and Kivshar Y S 2013 Science 340 283
[102] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196
[1] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[2] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[3] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
[4] Characteristics and mechanism analysis of Fano resonances in Π-shaped gold nano-trimer
Han-Hua Zhong(钟汉华), Jian-Hong Zhou(周见红), Chen-Jie Gu(顾辰杰), Mian Wang(王勉), Yun-Tuan Fang(方云团), Tian Xu(许田), Jun Zhou(周骏). Chin. Phys. B, 2017, 26(12): 127301.
[5] Tunable Fano resonances and plasmonic hybridization of gold triangle-rod dimer nanostructure
Meng Huang(黄萌), Dong Chen(陈栋), Li Zhang(张利), Jun Zhou(周骏). Chin. Phys. B, 2016, 25(5): 057303.
[6] Superscattering-enhanced narrow band forward scattering antenna
Hu De-Jiao, Zhang Zhi-You, Du Jing-Lei. Chin. Phys. B, 2015, 24(10): 104202.
[7] Fano resonance and wave transmission through a chain structure with an isolated ring composed of defects
Zhang Cun-Xi,Ding Xiu-Huan,Wang Rui,Zhou Yun-Qing,Kong Ling-Min. Chin. Phys. B, 2012, 21(3): 034202.
[8] Field-assisted spin-polarized electron transport through a single quantum well with spin–orbit coupling
Ding Xiu-Huan,Zhang Cun-Xi,Wang Rui,Zhou Yun-Qing,Kong Ling-Min. Chin. Phys. B, 2012, 21(3): 037302.
[9] Spin-dependent Breit–Wigner and Fano resonances in photon-assisted electron transport through a semiconductor heterostructure
Hu Li-Yun, Zhou Bin. Chin. Phys. B, 2011, 20(6): 067201.
[10] Electron resonance-transmission through a driven quantum well with spin--orbit coupling
Zhang Cun-Xi, Wang Rui, Nie Yi-Hang, Liang Jiu-Qing. Chin. Phys. B, 2008, 17(7): 2662-2669.
No Suggested Reading articles found!