Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047807    DOI: 10.1088/1674-1056/23/4/047807
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enormous enhancement of electric field in active gold nanoshells

Jiang Shu-Min (蒋书敏)a, Wu Da-Jian (吴大建)a, Wu Xue-Wei (吴雪炜)b, Liu Xiao-Jun (刘晓峻)b
a Faculty of Science, Jiangsu University, Zhenjiang 212013, China;
b School of Physics, Nanjing University, Nanjing 210093, China
Abstract  The electric field enhancement properties of an active gold nanoshell with gain material inside have been investigated by using Mie theory. As the gain coefficient of the inner core increases to a critical value, a super-resonance appears in the active gold nanoshell, and enormous enhancements of the electric fields can be found near the surface of the particle. With increasing shell thickness, the critical value of the gain coefficient for the super-resonance of the active gold nanoshell first decreases and then increases, and the corresponding surface enhanced Raman scattering (SERS) enhancement factor (G factor) also first increases and then decreases. The optimized active gold nanoshell can be obtained with an extremely high SERS G factor of the order of 1019-1020. Such an optimized active gold nanoshell possesses a high-efficiency SERS effect and may be useful for single-molecule detection.
Keywords:  gold nanoshell      enhancement of electric field      surface-enhanced Raman scattering      gain material  
Received:  09 September 2013      Revised:  10 October 2013      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  36.40.Vz (Optical properties of clusters)  
  73.22.Lp (Collective excitations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 51306072, 11174113, and 11204129), the Qing LanProject of Jiangsu Province, China, and the Senior Talent Foundation of Jiangsu University (Grant No. 12JDG060).
Corresponding Authors:  Wu Da-Jian, Liu Xiao-Jun     E-mail:  wudajian@ujs.edu.cn;liuxiaojun@nju.edu.cn
About author:  78.67.-n; 78.67.Bf; 36.40.Vz; 73.22.Lp

Cite this article: 

Jiang Shu-Min (蒋书敏), Wu Da-Jian (吴大建), Wu Xue-Wei (吴雪炜), Liu Xiao-Jun (刘晓峻) Enormous enhancement of electric field in active gold nanoshells 2014 Chin. Phys. B 23 047807

[1] Schatz G C 1984 Acc. Chem. Res. 17 370
[2] Su Q Q, Ma X Y, Dong J A, Jiang C Y and Qian W P 2011 ACS Appl. Mater. Interfaces 3 1873
[3] Schuetz M, Mueller C I, Salehi M, Lambert C and Schluecker S 2011 J. Biophoton. 4 453
[4] Chen L, Han X X, Yang J X, Zhou J, Song W, Zhao B, Xu W Q and Ozaki Y 2011 J. Colloid Interface Sci. 360 482
[5] Gopalakrishnan A, Malerba M, Tuccio S, Panaro S, Miele E, Chirumamilla M, Santoriello S, Dorigoni C, Giugni A, Zaccaria R P, Liberale C, De Angelis F, Razzari L, Krahne R, Toma A, Das G and Fabrizio Di E 2012 Ann. Phys. (Berlin) 524 620
[6] Wang J, Huang L Q, Tong H M, Zhai L P, Yuan L, Zhao L H, Zhang W W, Shan D Z, Hao A W and Feng X H 2013 Chin. Phys. B 22 047301
[7] Nie S and Emory S R 1997 Science 275 1102
[8] Schuck P J, Fromm D P, Sundaramurthy A, Kino G S and Moerner W E 2005 Phys. Rev. Lett. 94 017402
[9] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[10] Esenturk E N and Walker A R H 2008 J. Raman Spectr. 40 86
[11] Cong C, Wu D J and Liu X J 2012 Acta Phys. Sin. 61 037301 (in Chinese)
[12] Wu D J, Jiang S M, Cheng Y and Liu X J 2012 Gold Bull. 45 197
[13] Deng C Y, Zhang G L, Zou B, Shi H L, Liang Y J, Li Y C, Fu J X and Wang W Z 2013 Chin. Phys. B 22 106102
[14] Ahn H J, Thiyagarajan P, Jia L, Kim S I, Yoon J C, Thomas E L and Jang J H 2013 Nanoscale 5 1836
[15] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[16] Gordon J A and Ziolkowski R W 2007 Opt. Express 15 2622
[17] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[18] Xiao S M, Drachev V P, Kildishev A V, Ni X J, Chettiar U K, Yuan H K and Shalaev V M 2010 Nature 466 735
[19] Meng X G, Guler U, Kildishev A V, Fujita K, Tanaka K and Shalaev V M 2013 Sci. Rep. 3 1241
[20] Li Z Y and Xia Y N 2010 Nano Lett. 10 243
[21] Averitt R D, Westcott S L and Halas N J 1999 J. Opt. Soc. Am. B 16 1824
[22] Klimov V I, Ivanov S A, Nanda J, Achermann M, Bezel I, McGuire J A and Piryatinski A 2007 Nature 447 441
[23] Ma R M, Oulton R F, Sorger V J, Bartal G and Zhang X 2010 Nature Mater. 10 110
[24] Flynn R A, Kim C S, Vurgaftman I, Kim M, Meyer J R, Mäkinen A J, Bussmann K, Cheng L, Choa F S and Long J P 2011 Opt. Express 19 8954
[25] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley)
[26] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[27] Zhao K, Xu H X, Gu B H and Zhang Z Y 2006 J. Chem. Phys. 125 081102
[28] Prodan E, Radloof C, Halas N J and Nordlander P 2003 Science 302 419
[1] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[2] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[3] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[4] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[5] Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions
Yi Tian(田毅), Han-Fu Wang(王汉夫), Lan-Qin Yan(闫兰琴), Xian-Feng Zhang(张先锋), Attia Falak, Pei-Pei Chen(陈佩佩), Feng-Liang Dong(董凤良), Lian-Feng Sun(孙连峰), Wei-Guo Chu(禇卫国). Chin. Phys. B, 2018, 27(7): 077406.
[6] Quantitative and sensitive detection of prohibited fish drugs by surface-enhanced Raman scattering
Shi-Chao Lin(林世超), Xin Zhang(张鑫), Wei-Chen Zhao(赵伟臣), Zhao-Yang Chen(陈朝阳), Pan Du(杜攀), Yong-Mei Zhao(赵永梅), Zheng-Long Wu(吴正龙), Hai-Jun Xu(许海军). Chin. Phys. B, 2018, 27(2): 028707.
[7] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[8] Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field
Chun-Zhen Fan(范春珍), Shuang-Mei Zhu(朱双美), Hao-Yi Xin(辛昊毅). Chin. Phys. B, 2017, 26(2): 023301.
[9] An effective surface-enhanced Raman scattering template based on gold nanoparticle/silicon nanowire arrays
Wang Ming-Li (王明利), Zhang Chang-Xing (张常兴), Wu Zheng-Long (吴正龙), Jing Xi-Li (井西利), Xu Hai-Jun (许海军). Chin. Phys. B, 2014, 23(6): 067802.
[10] Perforated nanocap array: Facile fabrication process and efficient surface enhanced Raman scattering with fluorescence suppression
Wang Jun (王军), Huang Li-Qing (黄丽清), Tong Hui-Min (童慧敏), Zhai Li-Peng (翟立鹏), Yuan Lin (袁林), Zhao Li-Hua (赵丽华), Zhang Wei-Wei (张薇薇), Shan Dong-Zhi (单冬至), Hao Ai-Wen (郝爱文), Feng Xue-Hong (冯雪红). Chin. Phys. B, 2013, 22(4): 047301.
[11] Near-field properties of a shell nanocylinder pair with gain materials
Wang Qiao (王乔), Wu Shi-Fa (吴世法), Wang Xiao-Gang (王晓钢 ). Chin. Phys. B, 2012, 21(11): 117302.
No Suggested Reading articles found!