Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040303    DOI: 10.1088/1674-1056/23/4/040303
GENERAL Prev   Next  

Engineering steady-state entanglement for two atoms held in separate cavities through laser cooling

Shen Li-Tuo, Chen Rong-Xin, Wu Huai-Zhi, Yang Zhen-Biao
Laboratory of Quantum Optics, Department of Physics, Fuzhou University, Fuzhou 350002, China
Abstract  We propose a scheme to prepare the steady-state entanglement for two atoms, which are held in separate cavities that are coupled through a short optical fiber or optical resonator. The entangled steady-state with a high fidelity can be achieved even with a low cooperativity parameter, by making use of the driving laser fields. Such a cooling mechanism is based on a resonant laser pump of the unwanted ground states to the excited states, which finally decay to the desired steady-state.
Keywords:  laser cooling      steady-state entanglement      optical fiber  
Received:  19 July 2013      Revised:  09 September 2013      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB921601), the National Natural Science Foundation of China (Grant Nos. 11374054, 11305037, 11347114, and 11247283), the Natural Science Foundation of Fujian Province of China (Grant No. 2013J01012), and the Fund from Fuzhou University (Grant Nos. 022513, 022408, and 600891).
Corresponding Authors:  Yang Zhen-Biao     E-mail:  zbyang@fzu.edu.cn
About author:  03.67.Bg; 42.50.Pq

Cite this article: 

Shen Li-Tuo, Chen Rong-Xin, Wu Huai-Zhi, Yang Zhen-Biao Engineering steady-state entanglement for two atoms held in separate cavities through laser cooling 2014 Chin. Phys. B 23 040303

[1] Kastoryano M J, Reiter F and Sorensen A S 2011 Phys. Rev. Lett. 106 090502
[2] Reiter F and Sorensen A S 2012 Phys. Rev. A 85 032111
[3] Reiter F, Kastoryano M J and Sorensen A S 2012 New J. Phys. 14 053022
[4] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2012 Eur. Phys. Lett. 99 20003
[5] Vacanti G and Beige A 2009 New J. Phys. 11 083008
[6] Roghani M, Breuer H P and Helm H 2012 Phys. Rev. A 85 012313
[7] Busch J, De S, Ivanov S S, Torosov B T, Spiller T P and Beige A 2011 Phys. Rev. A 84 022316
[8] Cho J, Bose S and Kim M 2011 Phys. Rev. Lett. 106 020504
[9] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2013 Quantum Inf. Comput. 13 0281
[10] Wineland D J and Itano W M 1979 Phys. Rev. A 20 1521
[11] Ogden C D, Irish E K and Kim M S 2008 Phys. Rev. A 78 063805
[12] Hartmann M J, Brandão F G S L and Plenio M B 2008 Laser Photon. Rev. 2 527
[13] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[14] Plenio M B, Huelga S F, Beige A and Knight P L 1999 Phys. Rev. A 59 2468
[15] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
[16] Benatti F, Floreanini R and Piani M 2003 Phys. Rev. Lett. 91 070402
[17] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[18] Cho J, Angelakis D G and Bose S 2008 Phys. Rev. A 78 022323
[19] Zhong Z R 2010 Chin. Phys. Lett. 27 100305
[20] Hu X M and Zhang X H 2011 Chin. Phys. B 20 114205
[21] Chen M F and Ma S S 2009 Chin. Phys. B 18 3247
[22] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[23] Yang Z B, Wu H Z, Xia Y and Zheng S B 2011 Eur. Phys. J. D 61 737
[24] Yang Z B, Wu H Z, Su W J and Zheng S B 2009 Phys. Rev. A 80 012305
[25] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[26] Song J, Xia Y, Song H S, Guo J L and Nie J 2007 Eur. Phys. Lett. 80 60001
[27] Li W A and Wei L F 2012 Opt. Express 20 13440
[28] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
[29] Volz J, Gehr R, Dubois G, Estéve J and Reichel J 2011 Nature 475 210
[30] Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2011 Nat. Photon. 6 56
[1] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[2] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[3] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[4] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[5] Lax pair and vector semi-rational nonautonomous rogue waves fora coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[6] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[7] Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), and Jin-Ze Li(李金泽)$. Chin. Phys. B, 2020, 29(11): 110701.
[8] Dissipative generation for steady-state entanglement of two transmons in circuit QED
Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩). Chin. Phys. B, 2019, 28(8): 080303.
[9] Hollow and filled fiber bragg gratings in nano-bore optical fibers
Yong-Xin Zhang(张永欣), Sheng Liang(梁生), Qian-Qing Yu(余倩卿), Zheng-Gang Lian(廉正刚), Zi-Nian Dong(董梓年), Xuan Wang(王旋), Yu-Qin Lin(林裕勤), Yu-Qi Zou(邹郁祁), Kun Xing(邢坤), Liu-Yan Liang(梁柳雁), Xiao-Ting Zhao(赵小艇), Li-Jing Tu(涂立静). Chin. Phys. B, 2019, 28(7): 074210.
[10] Multi-functional optical fiber sensor system based ona dense wavelength division multiplexer
Yue-Xin Yin(尹悦鑫), Zhifa Wu(吴志发), Siwen Sun(孙思文), Liang Tian(田亮), Xibin Wang(王希斌), Yuanda Wu(吴远大), Daming Zhang(张大明). Chin. Phys. B, 2019, 28(7): 074202.
[11] Steady-state entanglement and heat current of two coupled qubits in two baths without rotating wave approximation
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2019, 28(6): 060303.
[12] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[13] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[14] Synthesis of strong SiV photoluminescent diamond particles on silica optical fiber by chemical vapor deposition
Zongchun Yang(仰宗春), Yingshuang Mei(梅盈爽), Chengke Chen(陈成克), Yinlan Ruan(阮银兰), Xiaojun Hu(胡晓君). Chin. Phys. B, 2018, 27(3): 038101.
[15] Theoretical analysis of optical force density distribution inside subwavelength-diameter optical fibers
Yun-Yuan Zhang(张运原), Hua-Kang Yu(虞华康), Xiang-Ke Wang(王向珂), Wan-Ling Wu(吴婉玲), Fu-Xing Gu(谷付星), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(10): 104210.
No Suggested Reading articles found!