Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 099501    DOI: 10.1088/1674-1056/22/9/099501

Dependence of the 85Rb coherent population trapping resonance characteristic on the pressure of N2 buffer gas

Qu Su-Ping, Zhang Yi, Gu Si-Hong
Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  In order to exploit its potential applications, we experimentally study the dependence of 85Rb-based coherent population trapping (CPT) resonance on N2 buffer gas with 6 vapor cells filled with natural rubidium and N2. The experiments are carried out at different pressures and temperatures, and the results reveal that higher cell temperature makes the resonance more sensitive to N2 pressure. Thus, it is important to choose a proper buffer gas pressure at a given cell temperature. This work provides valuable data for the application of 85Rb CPT resonance with a buffer gas of N2.
Keywords:  coherent population trapping (CPT)      buffer gas      atomic clock  
Received:  24 December 2012      Revised:  05 March 2013      Published:  26 July 2013
PACS:  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
  34.80.Bm (Elastic scattering)  
  32.70.Jz (Line shapes, widths, and shifts)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10927403).
Corresponding Authors:  Zhang Yi     E-mail:

Cite this article: 

Qu Su-Ping, Zhang Yi, Gu Si-Hong Dependence of the 85Rb coherent population trapping resonance characteristic on the pressure of N2 buffer gas 2013 Chin. Phys. B 22 099501

[1] Vanier J, Godone A and Levi F 1998 Phys. Rev. A 58 2345
[2] Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew L A and Moreland J 2004 Appl. Phys. Lett. 85 1460
[3] Lutwak R, Vlitas P, Varghes M, Mescher M, Serkland D K and Peake G M 2005 Proc. IEEE Int. Freq. Control Symp. p. 752
[4] Scully M O and Fleischhauer M 1992 Phys. Rev. Lett. 69 1360
[5] Nagel A, Graf L, Naumov A, Mariotti E, Biancalana V, Meschedeand D and Wynands R 1998 Euro. Phys. Lett. 44 31
[6] Schwindt P D D, Knappe S, Shah V, Hollberg L, Kitching J, Liew L and Moreland J 2004 Appl. Phys. Lett. 85 6409
[7] Su J, Deng K, Guo D Z, Wang Z, Chen J, Zhang G M and Chen X Z 2010 Chin. Phys. B 19 110701
[8] Zhou Z C, Wei R, Shi C Y, Li T and Wang Y Z 2011 Chin. Phys. B 20 034206
[9] Huang K K, Li N and Lu X H 2012 Chin. Phys. Lett. 29 100701
[10] Zhang J H, Liu Q, Zeng X J, Li J X and Sun W M 2012 Chin. Phys. Lett. 29 068501
[11] Zhang Y, Qu S and Gu S 2012 Opt. Express 20 6400
[12] Yun P, Zhang Y, Liu G, Deng W, You L and Gu S 2012 Euro. Phys. Lett. 97 63004
[13] Yang J, Liu G B and Gu S 2012 Acta Phys. Sin. 61 043202 (in Chinese)
[14] Liu G B, Du R C, Liu C Y and Gu S H 2008 Chin. Phys. Lett. 25 472
[15] Liu G and Gu S H 2010 J. Phys. B 43 035004
[16] Goka S, Okura T, Moroyama M and Watanabe Y 2008 Proc. IEEE Int. Freq. Control Symp. p. 103
[17] Liu L, Guo T, Deng K, Liu X Y, Chen X Z and Wang Z 2007 Chin. Phys. Lett. 24 1883
[18] Seltzer S J, Rampulla D M, Rivillon-Amy S, Chabal Y J, Bernasek S L and Romalis M V 2008 J. Appl. Phys. 104 103116
[19] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[20] Alcock C B, Itkin V P and Horrigan M K 1984 Can. Metall. Q 23 309
[21] Vanier J and Audoin C 1989 The Quantum Physics of Atomic Frequency Standards (Bristol: Adam Hilger)
[22] Vanier J 2005 Appl. Phys. B 81 421
[23] Micalizio S, Godone A, Levi F and Vanier J 2006 Phys. Rev. A 73 033414
[24] Bender P L 1963 Phys. Rev. 132 2154
[25] Bean B L and Lambert R H 1975 Phys. Rev. A 13 492
[26] Vanier J, Simard J F and Boulanger J S 1974 Phys. Rev. A 9 1031
[27] Vanier J, Godone A and Levi F 1998 Phys. Rev. A 58 2345
[28] Gu S and Behr J 2003 Phys. Rev. A 68 015804
[29] Knappe S, Hollberg L and Kitching J 2004 Opt. Lett. 29 388
[1] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[2] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[3] Rubidium-beam microwave clock pumped by distributed feedback diode lasers
Chang Liu(刘畅), Sheng Zhou(周晟), Yan-Hui Wang(王延辉), Shi-Min Hou(侯士敏). Chin. Phys. B, 2017, 26(11): 113201.
[4] An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks
N Batra, B K Sahoo, S De. Chin. Phys. B, 2016, 25(11): 113703.
[5] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan, Tan Bo-Zhong, Yang Jing, Zhang Yi, Gu Si-Hong. Chin. Phys. B, 2015, 24(6): 063302.
[6] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang, Xu Jing, Zhang Zhi-Qiang, Zhao Lu-Bing, Long Liang, Wu Ya-Ming. Chin. Phys. B, 2014, 23(7): 074302.
[7] Review of chip-scale atomic clocks based on coherent population trapping
Wang Zhong. Chin. Phys. B, 2014, 23(3): 030601.
[8] Characterizing passive coherent population trapping resonance in cesium vapor cell filled with neon as buffer gas
Liu Zhi, Wang Jie-Ying, Diao Wen-Ting, He Jun, Wang Jun-Min. Chin. Phys. B, 2013, 22(4): 043201.
[9] Analysis of influence of RF power and buffer gas pressure on sensitivity of optically pumped cesium magnetometer
Shi Rong-Ye, Wang Yan-Hui. Chin. Phys. B, 2013, 22(10): 100703.
[10] Miniaturized optical system for atomic fountain clock
Lü De-Sheng, Qu Qiu-Zhi, Wang Bin, Zhao Jian-Bo, Li Tang, Liu Liang, Wang Yu-Zhu. Chin. Phys. B, 2011, 20(6): 063201.
[11] Magnetic field measurement based on a stimulated two-photon Raman transition
Zhou Zi-Chao, Wei Rong, Shi Chun-Yan, Li Tang, Wang Yu-Zhu. Chin. Phys. B, 2011, 20(3): 034206.
[12] Stable 85Rb micro vapour cells: fabrication based on anodic bonding and application in chip-scale atomic clocks
Su Juan, Deng Ke, Guo Deng-Zhu, Wang Zhong, Chen Jing, Zhang Geng-Min, Chen Xu-Zong. Chin. Phys. B, 2010, 19(11): 110701.
[13] A diode laser spectrometer at 634nm and absolute frequency measurements using optical frequency comb
Yi Lin, Yuan Jie, Qi Xiang-Hui, Chen Wen-Lan, Zhou Da-Wei, Zhou Tong, Zhou Xiao-Ji, Chen Xu-Zong. Chin. Phys. B, 2009, 18(4): 1409-1412.
No Suggested Reading articles found!