Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090311    DOI: 10.1088/1674-1056/22/9/090311
GENERAL Prev   Next  

Distributed wireless quantum communication networks

Yu Xu-Taoa, Xu Jinb, Zhang Zai-Chenc
a State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China;
b Department of Physics, Southeast University, Nanjing 210096, China;
c State Key Laboratory of Mobile Communications, Nanjing 210096, China
Abstract  The distributed wireless quantum communication network (DWQCN) has a distributed network topology and transmits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum teleportation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entanglement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.
Keywords:  distributed wireless networks      quantum communication networks      quantum teleportation      routing protocol  
Received:  23 January 2013      Revised:  03 April 2013      Published:  26 July 2013
PACS:  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60902010).
Corresponding Authors:  Yu Xu-Tao     E-mail:

Cite this article: 

Yu Xu-Tao, Xu Jin, Zhang Zai-Chen Distributed wireless quantum communication networks 2013 Chin. Phys. B 22 090311

[1] Shan H G, Cheng H T and Zhuang W H 2011 IEEE Trans. Wireless Comm. 10 2603
[2] Akyildiz I F and Xudong W 2005 IEEE Comm. Mag. 43 s23
[3] Bloch M, Rodrigues M R D, McLaughlin S W and Barros J 2008 IEEE Trans. Inf. Theory 54 2515
[4] Kannhavong B, Nakayama H, Nemoto Y, Kato N and Jamalipour A 2007 IEEE Wiresss Comm. 14 85
[5] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[6] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[7] Wootters W and Zurek W 1982 Nature 299 802
[8] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[9] Hsieh M H and Wilde M M 2010 IEEE Trans. Inf. Theory 56 4705
[10] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[11] Briegel H J, Dur W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[12] Sheng Y B, Zhou L, Chen W W, Gong L Y, Zhao S M and Zheng B Y 2012 Chin. Phys. B 21 030307
[13] Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A and Pan J W 2012 Nat. Photonics 6 225
[14] Yao X C, Wang T X, Chen H Z, Gao W B, Fowler A G, Raussendorf R, Chen Z B, Liu N L, Lu C Y, Deng Y J, Chen Y A and Pan J W 2012 Nature 482 489
[15] Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z and Pan J W 2012 Nature 488 185
[16] Deng H L and Fang X M 2008 Chin. Phys. B 17 702
[17] Dupuis F, Hayden P and Li K 2010 IEEE Trans. Inf. Theory 56 2946
[18] Zhou X Q, Wu Y W and Zhao H 2011 Acta Phys. Sin. 60 40304 (in Chinese)
[19] Cheng S T, Wang C Y and Tao M H 2005 IEEE J. Sel. Area Comm. 23 1424
[20] Bacinoglu T, Gulbahar B and Akan O B 2010 Proceedings of IEEE Global Communications Conference, Miami USA, December 6-10, 2010 p. 1
[21] Zhou N R, Zeng B Y, Wang L J and Gong L H 2010 Acta Phys. Sin. 59 2193 (in Chinese)
[22] Zhou N R, Zeng G H, Zhu F C and Liu S Q 2006 J. Shanghai Jiaotong Univ. 40 1885 (in Chinese)
[23] Yu X T, Xu J and Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese)
[24] Perkins C, Royer E B and Das S 2003 IETF Network Working Group RFC 3561
[25] Zhou Y, Fang Y G and Zhang Y C 2008 IEEE Commun. Surv. Tut. 10 6
[1] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[2] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[3] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[4] Detection of the ideal resource for multiqubit teleportation
Zhao Ming-Jing, Chen Bin, Fei Shao-Ming. Chin. Phys. B, 2015, 24(7): 070302.
[5] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[6] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na, Quan Dong-Xiao, Pei Chang-Xing, Yang-Hong. Chin. Phys. B, 2015, 24(2): 020304.
[7] Statistical properties of coherent photon-subtracted two-mode squeezed vacuum and its application in quantum teleportation
Zhang Guo-Ping, Zheng Kai-Min, Liu Shi-You, Hu Li-Yun. Chin. Phys. B, 2014, 23(5): 050301.
[8] Distributed wireless quantum communication networks with partially entangled pairs
Yu Xu-Tao, Zhang Zai-Chen, Xu Jin. Chin. Phys. B, 2014, 23(1): 010303.
[9] Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels
Peng Jia-Yin, Mo Zhi-Wen. Chin. Phys. B, 2013, 22(5): 050310.
[10] Traffic resource allocation for complex networks
Ling Xiang, Hu Mao-Bin, Long Jian-Cheng, Ding Jian-Xun, Shi Qin. Chin. Phys. B, 2013, 22(1): 018904.
[11] The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states
Zhang Jing-Tao, He Guang-Qiang, Ren Li-Jie, Zeng Gui-Hua. Chin. Phys. B, 2011, 20(5): 050311.
[12] Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state
Wang Mei-Yu, Yan Feng-Li. Chin. Phys. B, 2011, 20(12): 120309.
[13] Deterministic quantum teleportation and information splitting via a peculiar W-class state
Mei Feng, Yu Ya-Fei, Zhang Zhi-Ming. Chin. Phys. B, 2010, 19(2): 020308.
[14] Deterministic and exact entanglement teleportation viathe W state
Chen Xiu-Bo, Wen Qiao-Yan, Sun Zhong-Xu, Shangguan Li-Ying, Yang Yi-Xian. Chin. Phys. B, 2010, 19(1): 010303.
[15] Thermal entanglement and teleportation in a three-qubit Heisenberg XXZ model with Dzyaloshinski--Moriya anisotropic antisymmetric interaction
Xie Li-Jun, Zhang Deng-Yu, Tang Shi-Qing, Zhan Xiao-Gui, Gao Feng. Chin. Phys. B, 2009, 18(8): 3203-3209.
No Suggested Reading articles found!