Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077501    DOI: 10.1088/1674-1056/22/7/077501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-1 Blume–Capel model with longitudinal random crystaland transverse magnetic fields:a mean-field approach

Erhan Albayrak
Department of Physics, Erciyes University, Kayseri 38039, Turkey
Abstract  The spin-1 Blume-Capel model with transverse Ω and longitudinal external magnetic fields h in addition to a longitudinal random crystal field D is studied in the mean-field approximation. It is assumed that the crystal field is either turned on with probability p or turned off with probability 1-p on the sites of a square lattice. Then the phase diagrams are calculated on the reduced temperature-crystal field planes for given values of γ=Ω/J and p at zero h. Thus, the effect of changing γ and p are illustrated on the phase diagrams in a great detail and interesting results are observed.
Keywords:  random crystal field      transverse field      spin-1      Blume-Capel model     
Received:  17 December 2012      Published:  01 June 2013
PACS:  75.10.Hk (Classical spin models)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.50.Gg (Ferrimagnetics)  
Corresponding Authors:  Erhan Albayrak     E-mail:  albayrak@erciyes.edu.tr

Cite this article: 

Erhan Albayrak Spin-1 Blume–Capel model with longitudinal random crystaland transverse magnetic fields:a mean-field approach 2013 Chin. Phys. B 22 077501

[1] Maritan A, Cieplak M, Swift M R, Toigo F and Banavar J R 1992 Phys. Rev. Lett. 69 221
[2] de Gennes P G 1963 Solid State Commun. 1 132
[3] Kaneyoshi T 1986 J. Phys. C: Solid State Phys. 19 L557
[4] Benyoussef A, Biaz T, Saber M and Touzani M 1987 J. Phys. C: Solid State Phys. 20 5349
[5] Carneiro C E I, Henriques V B and Salinas S R 1989 J. Phys.: Condens. Matter 1 3687
[6] Kaneyoshi T 1988 J. Phys. C: Solid State Phys. 21 L679
[7] Boccara N, Elkenz A and Saber M 1989 J. Phys.: Condens. Matter 1 5721
[8] Kaneyoshi T and Mielnicki J 1990 J. Phys.: Condens. Matter 2 8773
[9] T. Kaneyoshi 1992 Phys. Status Solidi (b) 170 313
[10] Carneiro C E I, Henriques V B and Salinas S R 1990 J. Phys. A: Math. Gen. 23 3383
[11] Ilkovič V 1995 Phys. Status Solidi (b) 192 K7
[12] Borelli M E S and Carneiro C E I 1996 Physica A 230 249
[13] Albayrak E 2011 Physica A 390 1529
[14] Branco N S and Boechat B M 1997 Phys. Rev. B 56 11673
[15] Branco N S 1999 Phys. Rev. B 60 1033
[16] Buzano C, Maritan A and Pelizzola A 1994 J. Phys.: Condens. Matter 6 327
[17] Ananikian N S, Avakian A R and Izmailian N S 1991 Physica A 172 391
[18] Sarmento E F, Fittipaldi I P and Kaneyoshi T 1992 J. Magn. Magn. Mater. 104 233
[19] Dai S T, Jiang Q and Li Z Y 1990 Phys. Rev. B 42 2597
[20] Jiang X F, Li J L, Zhong J L and Yang C Z 1993 Phys. Rev. B 47 827
[21] Jiang X F 1994 J. Magn. Magn. Mater. 134 167
[22] Htoutou K, Benaboud A, Ainane A and Saber M 2004 Physica A 338 479
[23] Htoutou K, Oubelkacem A, Ainane A and Saber M 2005 J. Magn. Magn. Mater. 288 259
[24] Miao H, Wei G, Liu J and Geng J 2009 J. Magn. Magn. Mater. 321 102
[25] Saxena V K 1983 Phys. Rev. B 27 6884
[26] Zhong J L, Yang C Z and Li J L 1991 J. Phys: Condens. Matter 3 1301
[27] Fittipaldi I P, Sarmento E F and Kaneyoshi T 1992 Physica A 186 591
[28] Buzano C and Vadacchino M 1983 Z. Phys. B: Condens. Matter 53 63
[29] Yuksel Y and Polat H 2010 J. Magn. Magn. Mater. 322 3907
[30] Benyoussef A and Ez-Zahraouy H 1994 J. Phys.: Condens. Matter 6 3411
[31] Benayad N, Zerhouni R and Klümper A 1998 Eur. Phys. J. B 5 687
[32] Albayrak E and Keskin M 1999 J. Magn. Magn. Mater. 206 83
[1] Magnetic phase diagrams of Fe-Mn-Al alloy on the Bethe lattice
Erhan Albayrak. Chin. Phys. B, 2017, 26(2): 020502.
[2] Nonequilibrium behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model
Ümüt Temizer. Chin. Phys. B, 2014, 23(7): 070511.
[3] Soliton breathers in spin-1 Bose–Einstein condensates
Ji Shen-Tong, Yan Pei-Gen, Liu Xue-Shen. Chin. Phys. B, 2014, 23(3): 030311.
[4] The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field
Zhong Ming, Xu Hui, Liu Xiao-Xian, Tong Pei-Qing. Chin. Phys. B, 2013, 22(9): 090313.
[5] Phase diagrams of spin-3/2 Ising model in the presence of random crystal field within the effective field theory based on two approximations
Ali Yigit, Erhan Albayrak. Chin. Phys. B, 2013, 22(10): 100508.
[6] Phase diagrams of the spin-2 Ising model in the presence of a quenched diluted crystal field distribution
Ali Yigit, Erhan Albayrak. Chin. Phys. B, 2012, 21(11): 110503.
[7] Thermal entanglement in two-qutrit spin-1 anisotropic Heisenberg model with inhomogeneous magnetic field
Erhan Albayrak. Chin. Phys. B, 2010, 19(9): 090319.
[8] Energy band structure of spin-1 condensates in optical lattices
Li Zhi, Zhang Ai-Xia, Ma Juan, Xue Ju-Kui. Chin. Phys. B, 2010, 19(10): 100306.
[9] Magnetic ordering of the bond-diluted two-dimensional mixed spin Ising system
Yan Shi-Lei. Chin. Phys. B, 2002, 11(10): 1066-1072.
No Suggested Reading articles found!