Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077402    DOI: 10.1088/1674-1056/22/7/077402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetization of Gd diffused Yba2Cu3O7-x superconductor:Experiment and theory

F. Inaniraa, Ş. Yildizbb, K. Ozturkcc, S. Celebicc
a Department of Physics, Art and Science Faculty, Recep Tayyip Erdogan University, 53100, Rize, Turkey;
b Department of Metallurgical and Materials Engineering, Ahi Evran University, 40100, K?rsehir, Turkey;
c Department of Physics, Karadeniz Technical University, 61000, Trabzon, Turkey
Abstract  The magnetization of Gd diffused YBa2Cu3O7-x is measured by a vibrating sample magnetometer (VSM) at selected temperatures (5, 25, 50, 77 K). The experimental results for the magnetization are analyzed in the critical state framework involving Kim-Anderson field dependence Jc(H) = Jc0/(1+|H>|/H0)n of critical current density and equilibrium magnetization Meq. It is found that the inclusion of the equilibrium magnetization becomes more important at higher temperatures. At 77 K, the shape of the isothermal M-H hysteresis curve is governed by the equilibrium magnetization. Some superconducting parameters are determined by fitting the calculated curves to the experimental data.
Keywords:  type-II superconductor      YBCO      surface effect      equilibrium magnetization      critical-state model  
Received:  22 May 2012      Revised:  18 January 2013      Accepted manuscript online: 
PACS:  74.81.Bd (Granular, melt-textured, amorphous, and composite superconductors)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.Wx (Vortex pinning (includes mechanisms and flux creep))  
Corresponding Authors:  Ş. Yildizb     E-mail:  sukruyldz@gmail.com

Cite this article: 

F. Inanira, Ş. Yildizb, K. Ozturkc, S. Celebic Magnetization of Gd diffused Yba2Cu3O7-x superconductor:Experiment and theory 2013 Chin. Phys. B 22 077402

[1] Hao Z and Clem J R 1991 Phys. Rev. Lett. 67 2371
[2] Hao Z and Clem J R, McElfresh M W, Civale L, Malezemoff A P and Holtzberg F 1991 Phys. Rev. B 43 2844
[3] Landau I L and Ott H R 2004 Physica C 411 83
[4] Murakami M, Sakai N, Higuchi T and Yoo S I 1996 Supercond. Sci. Technol. 9 1015
[5] Miyachi K, Sudoh K, Ichino Y, Yoshida Y and Takai Y 2003 Physica C 392-396 1261
[6] Nishida A, Teshima S and Taka C 2002 Physica C 378-381 349
[7] Islam M S and Baetzold R C 1989 Phys. Rev. B 40 10926
[8] Koshizuka N, Pradhan A K, Shibata S, Feng Y, Machi T and Nakano K 2001 Physica C 364-365 320
[9] Veal BW, Paulikas A P, Downey JW, Claus H, Vandervoort K, Tomlins G, Shi H, Jensen M and Mors L 1989 Physica C 162-164 97
[10] Hilgenkamp H, Scheider CW, Schulz R R, Goetz B, Schmehl A, Bielefeldt H and Mannhart J 1999 Physica C 326-327 7
[11] Nishida A, Teshima S, Taka C and Shigeta I 2003 Physica C 388-389 419
[12] Berenov A V, Foltyn S R, Schneider C W, Warburton P A and MacManus-Driscoll J L 2003 Solids State Ionics 164 149
[13] Yong F, Lian Z, Wen J G, Koshizuka N, Sulpica A, Tholence J L, Vallier J C and Monceau P 1998 Physica C 297 75
[14] Muralidhar M, Koblischka M R and Murakami M 1999 Physica C 313 232
[15] Johansen T H, Koblischka M R, Bratsberg H and Hetland P O 1997 Phys. Rev. B 56 11273
[16] Furayama M, Iguchi I and Muto U 1990 Physica B 165-166 1191
[17] Qin M J, Ji H L, Jin X, Yao X X, Rong X S, Ni Y M, Xiao L and Fu X K 1994 Phys. Rev. B 50 4086
[18] Kim Y B, Hempstead C F and Strnad A R 1962 Phys. Rev. Lett. 9 306
[19] Kim Y B, Hempstead C F and Strnad A R 1963 Phys. Rev. 131 2486
[20] Chen D X and Sanchez A 1992 Phys. Rev. B 45 10793
[21] Çelebi S, Inanir F and LeBlanc M A R 2007 J. Appl. Phys. 101 13906
[22] Celebi S, Ozturk A and Cevik U 1999 J. Alloys Compd. 288 249
[23] Celebi S, Ozturk A, Yanmaz E and Kobya A I 2000 J. Alloys Compd. 298 285
[24] Chen D X and Goldfarb R B 1989 J. Appl. Phys. 66 2489
[25] de Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin) p. 83
[26] LeBlanc M A R, Fillon G, Timms W E, Zahradnitsky A and Cave J R 1981 Cryogenics 21 491
[27] Idenbom M V, Kronmüller H, Li T W, Kes P H and Menovsky A A 1994 Physica C 222 203
[28] Schuster T H, Idenbom M V, Kuhn H, Brandt E H and Konczykowski M 1994 Phys. Rev. Lett. 73 1424
[29] Zeldow E, Larkin A I, Geshkenbein V B, Konczykowski M, Majer D, Khaykovich B, Vinokur V M and Shtrikman H 1994 Phys. Rev. Lett. 73 1428
[30] Burlachkov L, Yeshurun Y, Konczykowski M and Holtzberg H 1992 Phys. Rev. B 45 8193
[1] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[2] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[3] Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides
Hai Bo(薄海), Tianshuang Ren(任天爽), Zheng Chen(陈峥), Meng Zhang(张蒙), Yanwu Xie(谢燕武). Chin. Phys. B, 2019, 28(6): 067402.
[4] The influence of surface effects on Frederiks transition in nematic liquid crystal doped with ferroelectric nanoparticles
Erfan Kadivar, Mojtaba Farrokhbin. Chin. Phys. B, 2018, 27(4): 046801.
[5] Surface effects on the thermal conductivity of silicon nanowires
Hai-Peng Li(李海鹏), Rui-Qin Zhang(张瑞勤). Chin. Phys. B, 2018, 27(3): 036801.
[6] Strongly enhanced flux pinning in the YBa2Cu3O7-X films with the co-doping of BaTiO3 nanorod and Y2O3 nanoparticles at 65 K
Wang Hong-Yan (王洪艳), Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾). Chin. Phys. B, 2015, 24(9): 097401.
[7] Effects of surface adsorbed oxygen, applied voltage, and temperature on UV photoresponse of ZnO nanorods
Zong Xian-Li (宗仙丽), Zhu Rong (朱荣). Chin. Phys. B, 2015, 24(10): 107703.
[8] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
[9] Electronic states and shape of silicon quantum dots
Huang Wei-Qi (黄伟其), Miao Xing-Jian (苗信建), Huang Zhong-Mei (黄忠梅), Cheng Han-Qiong (陈汉琼), Shu Qin (苏琴). Chin. Phys. B, 2013, 22(6): 064207.
[10] Curved surface effect and emission on silicon nanostructures
Huang Wei-Qi (黄伟其), Yin Jun (尹君), Zhou Nian-Jie (周年杰), Huang Zhong-Mei (黄忠梅), Miao Xin-Jian (苗信建), Cheng Han-Qiong (陈汉琼), Su Qin (苏琴), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建). Chin. Phys. B, 2013, 22(10): 104204.
[11] Surface effect of nanocrystals doped with rare earth ions enriched on surface and its application in upconversion luminescence
He En-Jie(何恩节) Liu Ning(刘宁), Zhang Mao-Lian(章毛连), Qin Yan-Fu(秦炎福), Guan Bang-Gui(官邦贵), Li Yong(李勇), and Guo Ming-Lei(郭明磊) . Chin. Phys. B, 2012, 21(7): 073201.
[12] A model for the chain-to-plane charge transfer in YBa2Cu3O6+x
V. M. Matic, N. Dj. Lazarov, M. Milic. Chin. Phys. B, 2012, 21(11): 117401.
[13] Influences of surface effects and large deformation on the resonant properties of ultrathin silicon nanocantilevers
Zhang Jia-Hong(张加宏), Li Min(李敏), Gu Fang(顾芳), and Liu Qing-Quan(刘清惓) . Chin. Phys. B, 2012, 21(1): 016203.
[14] Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7-x fabricated by chemical solution deposition
Ding Fa-Zhu(丁发柱), Gu Hong-Wei(古宏伟), Zhang Teng(张腾), Dai Shao-Tao(戴少涛), and Xiao Li-Ye(肖立业). Chin. Phys. B, 2011, 20(2): 027402.
[15] Simulation of dielectric resonator for high-Tc radio frequency superconducting quantum interference device
Gao Ji(高吉), Yang Tao(杨涛), Ma Ping(马平), and Dai Yuan-Dong(戴远东). Chin. Phys. B, 2010, 19(6): 067402.
No Suggested Reading articles found!