Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110503    DOI: 10.1088/1674-1056/21/11/110503
GENERAL Prev   Next  

Phase diagrams of the spin-2 Ising model in the presence of a quenched diluted crystal field distribution

Ali Yigita, Erhan Albayrakb
a Cankiri Karatekin University, Department of Physics, Cankiri 18100, Turkey;
b Erciyes University, Department of Physics, Kayseri 38039, Turkey
Abstract  We have investigated the random crystal field effects on the phase diagrams of the spin-2 Blume-Capel model for the honeycomb lattice using the effective-field theory with correlations. To do so, the thermal variations of magnetization are studied via calculating the phase diagrams of the model. We have found that the model displays both second-order and first-order phase transitions in addition to the tricritical and isolated points. Reentrant behavior is also observed for some appropriate values of certain system parameters. Besides the usual ground-state phases of spin-2 model including ±2, ±1, and 0, we have also observed the phases ±3/2 and ±1/2 which are unusual for spin-2 case.
Keywords:  spin-2 model      random crystal field      effective-field theory      isolated critical points and triciritical points  
Received:  25 April 2012      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.50.+q (Lattice theory and statistics)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
Corresponding Authors:  Ali Yigit     E-mail:  ayigit80@karatekin.edu.tr

Cite this article: 

Ali Yigit, Erhan Albayrak Phase diagrams of the spin-2 Ising model in the presence of a quenched diluted crystal field distribution 2012 Chin. Phys. B 21 110503

[1] Kaneyoshi T, Tucker J W and Jascur M 1992 Physica A 186 495
[2] Plascak J A, Moreira J G and saBarreto F C 1993 Phys. Lett. A 173 360
[3] Jiang W, Guo A B, Li X, Wang X K and Bai B D 2006 Commun. Theor. Phys. 46 1105
[4] Liang Y Q, Wei G Z, Zhang Q and Song G L 2004 Chin. Phys. Lett. 21 378
[5] Jiang W, Wei G Z and Xin Z H 2000 J. Magn. Magn. Mater. 220 96
[6] Zhao J, Xu X G and Wei G Z 2009 Commun. Theor. Phys. 52 163
[7] Zhao J, Wei G Z and Xu X G 2006 Commun. Theor. Phys. 45 749
[8] Ertas M, Deviren B and Keskin M 2012 J. Magn. Magn. Mater. 324 704
[9] Keskin M, Canko O and Ertas M 2007 J. Exp. Theor. Phys. 105 1190
[10] Bahmad L, Benyoussef A and El Kenz A 2007 Phys. Rev. B 76 094412
[11] Yüksel Y, Akinci U and Polat H 2012 Physica A 391 2819
[12] Gulpinar G, Vatansever E and Agartioglu M 2012 Physica A (in press)
[13] Honmura R and Kaneyoshi T 1979 J. Phys. C 12 3979
[14] Kaneyoshi T, Fittipaldi I P, Honmura R and Manabe T 1981 Phys. Rev. B 24 481
[15] Tamura I and Kaneyoshi T 1981 Prog. Theor. Phys. 66 1892
[16] Zernike F 1940 Physica 1 565
[17] Ertas M, Keskin M and Deviren B 2012 J. Magn. Magn. Mater. 324 1503
[1] Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin Kantar. Chin. Phys. B, 2015, 24(10): 107501.
[2] An effective-field theory study of hexagonal Ising nanowire:Thermal and magnetic properties
Yusuf Kocakaplan, Ersin Kantar. Chin. Phys. B, 2014, 23(4): 046801.
[3] Spin-1 Blume–Capel model with longitudinal random crystaland transverse magnetic fields:a mean-field approach
Erhan Albayrak. Chin. Phys. B, 2013, 22(7): 077501.
[4] Effective-field and Monte Carlo studies of mixed spin-2 and spin-1/2 Ising diamond chain
Liu Wei-Jie (刘伟杰), Xin Zi-Hua (辛子华), Chen Si-Lun (陈思伦), Zhang Cong-Yan (张聪艳 ). Chin. Phys. B, 2013, 22(2): 027501.
[5] Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube
H. Magoussi, A. Zaim, M. Kerouad. Chin. Phys. B, 2013, 22(11): 116401.
[6] Phase diagrams of spin-3/2 Ising model in the presence of random crystal field within the effective field theory based on two approximations
Ali Yigit, Erhan Albayrak. Chin. Phys. B, 2013, 22(10): 100508.
[7] Phase diagrams in mixed spin-3/2 and spin-2 Ising system with two alternative layers within the effective-field theory
Bayram Deviren, Yasin Polat, and Mustafa Keskin. Chin. Phys. B, 2011, 20(6): 060507.
[8] Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
Bayram Deviren, Osman Canko, and Mustafa Keskin. Chin. Phys. B, 2010, 19(5): 050518.
No Suggested Reading articles found!