Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074701    DOI: 10.1088/1674-1056/22/7/074701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Casson fluid flow and heat transfer over a nonlinearly stretching surface

Swati Mukhopadhyay
Department of Mathematics, the University of Burdwan, Burdwan-713104, W. B., India
Abstract  A boundary layer analysis is presented for non-Newtonian fluid flow and heat transfer over a nonlinearly stretching surface. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. By using suitable transformations, the governing partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained with the shooting method. The effect of increasing the Casson parameter is to suppress the velocity field. However the temperature is enhanced with the increasing Casson parameter.
Keywords:  nonlinear stretching      Casson fluid      heat transfer      similarity transformations  
Received:  10 November 2012      Revised:  18 January 2013      Accepted manuscript online: 
PACS:  47.15.Cb (Laminar boundary layers)  
  44.20.+b (Boundary layer heat flow)  
  47.50.-d (Non-Newtonian fluid flows)  
Fund: Project supported by UGC, New Delhi, India under the Special Assistance Programme DSA Phase-1.
Corresponding Authors:  Swati Mukhopadhyay     E-mail:  swati_bumath@yahoo.co.in

Cite this article: 

Swati Mukhopadhyay Casson fluid flow and heat transfer over a nonlinearly stretching surface 2013 Chin. Phys. B 22 074701

[1] Zheng L, Niu J, Zhang X and Ma L 2012 Int. J. Heat Mass Transfer 55 7577
[2] Pal D 2009 Meccanica 44 145
[3] Mukhopadhyay S, Layek G C and Samad Sk A 2005 Int. J. Heat Mass Transfer 48 4460
[4] Mahapatra T R, Dholey S and Gupta A S 2007 Int. J. Non-Linear Mechanics 42 484
[5] Sajid M, Hayat T and Asghar S 2007 Int. J. Heat Mass Transfer 50 1723
[6] Mukhopadhyay S and Layek G C 2008 Int. J. Heat Mass Transfer 51 2167
[7] Crane L J 1970 Zeit. Angew. Math. Mech. 21 645
[8] Carragher P and Crane L J 1982 Zeit. Angew. Math. Mech. 62 564
[9] Gupta P S and Gupta A S 1977 Can. J. Chem. Engng 55 744
[10] Abel M S, Datti P S and Mahesha N 2009 Int. J. Heat Mass Transfer 52 2902
[11] Abel M S and Mahesha N 2008 Appl. Math. Modelling 32 1965
[12] Ali M E 1995 Int. J. Heat Mass Flow. 16 280
[13] Mukhopadhyay S and Andersson H I 2009 Heat Mass Transfer 45 1447
[14] Mukhopadhyay S 2010 Chin. Phys. Lett. 27 124401
[15] Ding Q and Zhang H Q 2009 Chin. Phys. Lett. 26 104701
[16] Nazar R, Ishak A and Pop I 2009 Chin. Phys. Lett. 26 014702
[17] Fang T G, Zhang J and Yao S S 2010 Chin. Phys. Lett. 27 124702
[18] Eerdunbuhe and Temuerchaolu 2012 Chin. Phys. B 21 035201
[19] Salem A M and Fathy R 2012 Chin. Phys. B. 21 054701
[20] Ellahi R, Hayat T, Mahomed F M and Zeeshan A 2010 Z. Angew. Math. Phys. 61 877
[21] Hsiao K L 2007 Appl. Thermal Engng 27 1895
[22] Mukhopadhyay S 2012 Chin. Phys. Lett. 29 054703
[23] Mukhopadhyay S and Bhattacharyya K 2012 J. Egyptian Math. Society 20 229
[24] Mukhopadhyay S 2012 Z. Naturforsch. 67a 641
[25] Mukhopadhyay S and Vajravelu K 2012 ASME J. Appl. Mech. 79 044508
[26] Andersson H I and Dandapat B S 1992 Appl. Anal. Continuous Media 1 339
[27] Hassanien I A 1996 Appl. Model 20 779
[28] Haroun M H 2007 Commun. Nonlinear Sci. Numer. Simul. 12 1464
[29] Siddiqui A M, Zeb A, Ghori Q K and Benharbit A M 2008 Chaos Soliton. Fract. 36 182
[30] Sajid M, Ahmad I, Hayat T and Ayub M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 96
[31] Heyhat M M and Khabazi N 2010 J. Mech. Engng Sci. IMechE 225 Part C
[32] Hayat T, Awais M and Sajid M 2011 Int. J. Mod. Phys. B 25 2863
[33] Fung Y C 1984 (New York: Springer-Verlag)
[34] Dash R K, Mehta K N and Jayaraman G 1996 Int. J. Engng Sci. 34 1145
[35] Eldabe N T M and Salwa M G E 1995 J. Phys. Soc. Jpn. 64 41
[36] Boyd J, Buick J M and Green S 2007 Phys. Fluids 19 93
[37] Vajravelu K 2001 Appl. Math. Comput. 124 281
[38] Vajravelu K and Cannon J R 2006 Appl. Math. Comput. 181 609
[39] Bataller R C 2008 J. Materials Process. Tech. 203 176
[40] Mukhopadhyay S 2009 Int. J. Heat Mass Transfer 52 3261
[41] Mukhopadhyay S 2011 Nuc. Eng. Des. 241 2660
[42] Mukhopadhyay S and Gorla R S R 2012 Heat Mass Transfer 48 1773
[43] Bhattacharyya K, Mukhopadhyay S, Layek G C and Pop I 2012 Int. J. Heat Mass Transfer 55 2945
[44] Cortell R 2007 Appl. Math. Comput. 184 864
[1] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[2] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[3] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[4] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[5] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[6] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[7] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
[8] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
[9] Three-dimensional human thermoregulation model based on pulsatile blood flow and heating mechanism
Si-Na Dang(党思娜), Hong-Jun Xue(薛红军), Xiao-Yan Zhang(张晓燕), Jue Qu(瞿珏), Cheng-Wen Zhong(钟诚文), Si-Yu Chen(陈思宇). Chin. Phys. B, 2018, 27(11): 114402.
[10] Heat transfer enhancement in MOSFET mounted on different FR4 substrates by thermal transient measurement
Norazlina M S, Dheepan Chakravarthii M K, Shanmugan S, Mutharasu D, Shahrom Mahmud. Chin. Phys. B, 2017, 26(9): 098901.
[11] Role of entropy generation minimization in thermal optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505.
[12] Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects
Tanzila Hayat, S Nadeem. Chin. Phys. B, 2016, 25(11): 114701.
[13] Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method
Wang Wei-Jie, Zhao Zhen-Guo, Zhao Yi, Zhou Hai-Jing, Fu Ce-Ji. Chin. Phys. B, 2015, 24(9): 094213.
[14] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng, Li Feng-Chen, Cai Wei-Hua, Zhang Hong-Na, Yu Bo. Chin. Phys. B, 2015, 24(8): 084401.
[15] Flow and heat transfer of a nanofluid over a hyperbolically stretching sheet
A. Ahmad, S. Asghar, A. Alsaedi. Chin. Phys. B, 2014, 23(7): 074401.
No Suggested Reading articles found!