Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040307    DOI: 10.1088/1674-1056/22/4/040307
GENERAL Prev   Next  

Efficient generation of two-dimensional cluster states in cavity QED

Zhang Ganga, Zhou Jianb c, Xue Zheng-Yuanc
a Machinery and Electronics Engineering Institute, West Anhui University, Lu'an 237012, China;
b Anhui Xinhua University, Hefei 230088, China;
c Laboratory of Quantum Information Technology and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  We propose a scheme to achieve a kind of nontrivial multipartite pair-wise controlled phase operation in a cavity QED setup. The operation implemented is of geometrical nature and not sensitive to the thermal state of the cavity. In particular, we are manage to avoid the conventional dispersive coupling so that high speed gate operation is achieved which is very important in view of decoherence. We show that this multipartite pair-wise controlled phase operation makes the generation of two-dimensional cluster states very efficient.
Keywords:  controlled phase gate      cluster state      cavity QED     
Received:  25 July 2012      Published:  01 March 2013
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Fundamental Research Program of China (Grant No. 2013CB921804), the National Natural Science Foundation of China (Grant No. 11004065), the Natural Science Foundation of Guangdong Province of China (Grant Nos. 10451063101006312 and S2011040000403), and the Funds of the Education Department of Anhui Province of China (Grant Nos. KJ2010A323, 2010SQRL187, and KJ2012B075).
Corresponding Authors:  Xue Zheng-Yuan     E-mail:

Cite this article: 

Zhang Gang, Zhou Jian, Xue Zheng-Yuan Efficient generation of two-dimensional cluster states in cavity QED 2013 Chin. Phys. B 22 040307

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[3] Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501
[4] Zou X B and Mathis W 2005 Phys. Rev. A 72 013809
[5] Dong P, Xue Z Y, Yang M and Cao Z L 2006 Phys. Rev. A 73 033818
[6] Lin X M, Xue P, Chen M Y, Chen Z H and Li X H 2006 Phys. Rev. A 74 052339
[7] Zhang X L, Gao K L and Feng M 2007 Phys. Rev. A 75 034308
[8] Gont.a D, Radtke T and Fritzsche S 2009 Phys. Rev. A 79 062319
[9] Ye L 2007 Eur. Phys. J. D 41 413
[10] Ye L and Guo G C 2007 Phys. Lett. A 361 460
[11] Song J, Xia Y and Song H S 2010 Appl. Phys. Lett. 96 071102
[12] Shi Z C, Xia Y, Song J and Song H S 2012 Eur. Phys. J. D 66 11
[13] Dong P, Zhang L H and Cao Z L 2008 Chin. Phys. B 17 1979
[14] Zou C L, Gao G J, Lu Y, Li D C, Yang M and Cao Z L 2008 Chin. Phys. B 17 1174
[15] Zhang Z M and Li W B 2007 Chin. Phys. Lett. 24 344
[16] Wu H Z, Yang Z B and Zheng S B 2007 Chin. Phys. Lett. 24 3055
[17] Du G, Lai B H, Yu Y F and Zhang Z M 2009 Chin. Phys. Lett. 26 104201
[18] Xue Z Y, Zhang G, Dong P, Yi Y M and Cao Z L 2006 Eur. Phys. J. B 52 333
[19] Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303
[20] Zheng X H and Cao Z L 2006 J. Phys.: Condens. Matter 18 L599
[21] Zhang F Y, Pei P and Song H S 2010 Physica B 405 3334
[22] Song K H 2009 Chin. Phys. Lett. 26 120302
[23] Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
[24] Ai L Y, Shi Y L and Zhang Z M 2011 Chin. Phys. B 20 100303
[25] Chen Q, Feng M, Du J F and Hai W H 2011 Chin. Phys. B 20 010308
[26] Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087
[27] Shor P W 1995 Phys. Rev. A 52 R2493
[28] Steane A M 1996 Phys. Rev. Lett. 77 793
[29] Grover L K 1998 Phys. Rev. Lett. 80 4329
[30] Šašura M and Buzek V 2001 Phys. Rev. A 64 012305
[31] Braunstein S L, Buzek V and Hillery M 2001 Phys. Rev. A 63 052313
[32] Yang C P, Liu Y X and Nori F 2010 Phys. Rev. A 81 062323
[33] Song K H, Zhao Y J, Shi Z G, Xiang S H and Chen X W 2012 Eur. Phys. J. D 66 1
[34] Solano E, de Matos Filho R L, and Zagury N 2001 Phys. Rev. Lett. 87 060402
[35] Zheng S B 2003 Phys. Rev. A 68 035801
[36] Mmer K and Sensen A 1999 Phys. Rev. Lett. 82 1835
[37] Sensen A and M?mer K 1999 Phys. Rev. Lett. 82 1971
[38] Sensen A and Mmer K 2000 Phys. Rev. A 62 022311
[39] Zhu S L, Wang Z D and Zanardi P 2005 Phys. Rev. Lett. 94 100502
[40] Xue Z Y and Wang Z D 2007 Phys. Rev. A 75 064303
[41] Xue Z Y 2012 Quantum Inf. Process. 11 1381
[42] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902
[43] Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovi B, Langer C, Rosenband T and Wineland D J 2003 Nature. 422 412
[44] Zeng B, Zhou D L and You L 2005 Phy. Rev. Lett. 95 110502
[45] Raimond J M, Bruneand M and Haroche S 2001 Rev. Mod. Phys. 73 565
[1] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[2] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[3] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
[4] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[5] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[6] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling, Chen Mei-Feng. Chin. Phys. B, 2015, 24(7): 070310.
[7] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang, Yu Ya-Fei, Zhang Zhi-Ming. Chin. Phys. B, 2014, 23(6): 060306.
[8] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji, Yeon Kyu-Hwang, Wang Hong-Fu, Zhang Shou. Chin. Phys. B, 2014, 23(4): 040301.
[9] Electronic cluster state entanglement concentration based on charge detection
Liu Jiong, Zhao Sheng-Yang, Zhou Lan, Sheng Yu-Bo. Chin. Phys. B, 2014, 23(2): 020313.
[10] Large payload quantum steganography based on cavity quantum electrodynamics
Ye Tian-Yu, Jiang Li-Zhen. Chin. Phys. B, 2013, 22(4): 040305.
[11] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin, Su Shi-Lei, Sun Li-Li, Cheng Liu-Yong, Wang Hong-Fu, Zhang Shou. Chin. Phys. B, 2013, 22(3): 030305.
[12] Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Su Shi-Lei,Wang Yuan,Guo Qi,Wang Hong-Fu,Zhang Shou. Chin. Phys. B, 2012, 21(4): 044205.
[13] Controlled quantum state sharing of arbitrary two-qubit states with five-qubit cluster states
Wang Dong, Zha Xin-Wei, Lan Qian, Li Ning, Wei Jing. Chin. Phys. B, 2011, 20(9): 090305.
[14] Implementation of quantum controlled phase gate and preparation of multiparticle entanglement in cavity QED
Wu Xi, Chen Zhi-Hua, Zhang Yong, Chen Yue-Hua, Ye Ming-Yong, Lin Xiu-Min. Chin. Phys. B, 2011, 20(6): 060306.
[15] Quantum logic operations on two distant atoms trapped in two optical-fibre-connected cavities
Zhang Ying-Qiao, Zhang Shou, Yeon Kyu-Hwang, Yu Seong-Cho. Chin. Phys. B, 2011, 20(12): 120310.
No Suggested Reading articles found!