Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 114209    DOI: 10.1088/1674-1056/22/11/114209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Physical origin of observed nonlinearities in Poly (1-naphthyl methacrylate):Using a single transistor–transistor logic modulated laser beam

Qusay M. A. Hassan, Hussain A. Badran, Alaa Y. AL-Ahmad, Chassib A. Emshary
Department of Physics, College of Education, University of Basrah, Basrah, Iraq
Abstract  A thermal lens technique is adopted using a single modulated continuous wave (cw) 532-nm laser beam to evaluate the nonlinear refractive index n2, and the thermo-optic coefficient dn/dT, in polymer Poly (1-naphthyl methacrylate) (P-1-NM) dissolved in chloroform, tetrahydrofuran (THF), and dimethyl sulfoxide (DMSO) solvents. The results are compared with Z-scan and diffraction ring techniques. The comparison reveals the effectiveness and the simplicity of the TTL modulation technique. The physical origin is discussed for the obtained results.
Keywords:  nonlinear refractive index      thermo-optic coefficient      self-phase modulation      nonlinear optics  
Received:  16 March 2013      Revised:  01 May 2013      Accepted manuscript online: 
PACS:  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  78.20.Nv  
  78.66.Qn (Polymers; organic compounds)  
Corresponding Authors:  Hussain A. Badran     E-mail:  badran_hussein@yahoo.com

Cite this article: 

Qusay M. A. Hassan, Hussain A. Badran, Alaa Y. AL-Ahmad, Chassib A. Emshary Physical origin of observed nonlinearities in Poly (1-naphthyl methacrylate):Using a single transistor–transistor logic modulated laser beam 2013 Chin. Phys. B 22 114209

[1] Franko M and Tran C D 2010 Thermal Lens Spectroscopy, Encyclopedia of Analytical Chemistry (John Wiley & Sons, Limited) p. 126
[2] Han Y N, Zhang W J, Dong F Z and Xia Y X 1992 Chin. Phys. Lett. 9 647
[3] Lima S M, Andrade A A, Catunde T, Catunda T, Lebullenger R, Smektala F, Jestin Y and Baesso M L 2001 J. Non-Cryst. Sol. 284 203
[4] Kurian A, George S D, Nampoori V P N and Vallabhan C P G 2005 Spectrochiemica Acta Part A 61 2799
[5] Joseph S A, Hari M, Mathew S, Sharma G, Soumya, Hadiya V M, Radhakrishnan P and Nampoori V P N 2010 Opt. Commun. 283 313
[6] Zhang G Y, Jiao Z Y, Guo S G, Zhang X H, Gu X W, Yan C F, Wu D E and Song F 2004 Chin. Phys. 13 1283
[7] Malacarne L C, Astrath N G C, Pedreira P R B, Mendes R S, Baesso M L 1, Joshi P R and Bialkowski S E 2010 J. Appl. Phys. 107 053104
[8] Shimosaka T, Iwamoto K, Izako M, Suzuki A, Uchiyama K and Hobo T 2004 Micron 35 297
[9] Franko M 2001 Talanta 54 1
[10] Franko M, Šikovec M, Kožar-Logar J and Bicanic D 2001 Anal. Sci. 17 515
[11] Kurian A, Punnikrishnan K, Lees T, Nampoori V P and Vallabhan C P G 2002 Laser Chem. 20 81
[12] ProskurninMA, SlyadnevMN, TokeshiMand Kitamori T 2003 Anal. Chim. Acta 480 79
[13] Yamauchi M, Tokeshi M, Yamaguchi J, Fukuzawa T, Hattori A, Hibara A and Kitamori T 2006 J. Chromatogr. A 1106 89
[14] Rohling J H, Mura J, Pereira J R D, Palangana A J, Medina A N, Bento A C and Baesso M L 2002 Braz. J. Phys. 32 575
[15] Allonas X, Ley C, Bibaut C, Jacques P and Fouassier J P 2000 Chem. Phys. Lett. 322 483
[16] Zhang Y J, Zou J J, Wang X H, Chang B K, Qian Y S, Zhang J J and Cao P 2011 Chin. Phys. B 20 48501
[17] Sikovec M, Novic M and Franko M 1996 J. Chromatogr. A 739 111
[18] Gu X M, Wang S R, Qin K X and Li J C 1995 J. Emviron. Sci. 7 502
[19] Liu Z B, Tian J G, Zang W P, Zho W Y, Zhang C P and Zhang G Y 2003 Chin. Phys. Lett. 20 509
[20] Brasselet E and Galstian T V 2001 J. Opt. Soc. Am. B 18 982
[21] Zolotko A S, Kitaeva V F, Kroo N, Sobolev N N and Csillag L 1980 JETP Lett. 32 158
[22] Badran H A, Ali H Q M, Al-Ahmad A Y and Emshary C A 2011 Can. J. Phys. 89 1219
[23] Yang X, Qi S, Zhang C, Chen K, Liang X, Yang G, Xu T, Han Y and Tian J 2005 Opt. Commum. 256 414
[24] Yeh H C, Kuo Y C, Lin S H, Lin J D, Mo T S and Huang S Y 2011 Opt. Lett 36 1311
[25] Wang Y W, Deng J Q, Wen S C, Tang Z X, Fu X Q and Fan D Y 2009 Acta Phys. Sin. 58 1738 (in Chinese)
[26] Durbin D, Arakelian S M, Cheung M M and Shen Y R 1983 J. Phys. Colloques 44 C2-161
[27] Luo K F, Jiag X L and Yang Y L 2008 Chin. Phys. B 17 2600
[28] Sheik-Bahae M, Said A A, Huei W T, Hagan D J and van Stryland E W 1990 IEEE J. Sel. Top. Quantum Electron. 26 760
[29] Qu S L, Fu S Y, Li H J, Geng Y H, Song Y L, Liu S T, Li Y L and Zhu C S 2002 Chin. Phys. Lett. 19 1811
[30] Zhao C J, Qu S L, Gao Y C, Song Y L, Qiu J R and Zhu C S 2003 Chin. Phys. Lett. 20 1752
[31] Cason M, Bersani D, Antoioli G, Lottici P P, Montenero A and Cavalli M 1999 Opt. Mater. 12 447
[32] Ogusu K, Kohtani Y and Shao H 1996 Opt. Rev. 3 232
[33] Milanchian K, Tajalli H, Gilani G and Zakerhamidi M S 2009 Opt. Mater. 32 12
[34] Villafranca A B and Saravanamuttu K 2009 J. Opt. A-Pure Appl. Opt. 11 125202
[35] Feng L, Wang Y L, Ren Q, Zhang G H, Yang H L and Sun X B 2005 Chin. Phys. Lett. 22 2834
[36] Aspler J S and Guillet J E 1979 Macromolecules 12 1082
[37] Spyros A and Dais P 1992 Macromolecules 25 1062
[38] Zhang G, Wang H, Yu Y, Xiong F, Tang G and Chen W 2003 Appl. Phys. B 76 677
[39] Vinitha G and Ramalingam A 2008 Nonlinear Quant. Opt. 18 1176
[40] Boyd RW2008 Nonlinear Optics 3rd edn. (Academic Press) pp. 78–91
[41] Sinha S, Ray A and Dasgupta K 2000 J. Appl. Phys. 87 3222
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[3] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[4] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[5] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[6] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[7] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[8] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[9] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[10] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[11] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[12] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[13] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[14] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[15] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
No Suggested Reading articles found!