Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 108502    DOI: 10.1088/1674-1056/22/10/108502

Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p–Si and Al/Bi4Ti3O12/p–Si structures by using the admittance spectroscopy method

Mert Yíldíríma, Perihan Durmuşb, Şemsettin Altíndalb
a Department of Physics, Faculty of Arts & Sciences, Düzce University, 81620, Düzce, Turkey;
b Department of Physics, Faculty of Sciences, Gazi University, 06500, Ankara, Turkey
Abstract  In this study, Al/p–Si and Al/Bi4Ti3O12/p–Si structures are fabricated and their interface states (Nss), the values of series resistance (Rs), and AC electrical conductivity (σac) are obtained each as a function of temperature using admittance spectroscopy method which includes capacitance-voltage (C–V) and conductance-voltage (G–V) measurements. In addition, the effect of interfacial Bi4Ti3O12 (BTO) layer on the performance of the structure is investigated. The voltage-dependent profiles of Nss and Rs are obtained from the high-low frequency capacitance method and the Nicollian method, respectively. Experimental results show that Nss and Rs, as strong functions of temperature and applied bias voltage, each exhibit a peak, whose position shifts towards the reverse bias region, in the depletion region. Such a peak behavior is attributed to the particular distribution of Nss and the reordering and restructuring of Nss under the effect of temperature. The values of activation energy (Ea), obtained from the slope of the Arrhenius plot, of both structures are obtained to be bias voltage-independent, and the Ea of the metal-ferroelectric-semiconductor (MFS) structure is found to be half that of the metal-semiconductor (MS) structure. Furthermore, other main electrical parameters, such as carrier concentration of acceptor atoms (NA), built-in potential (Vbi), Fermi energy (EF), image force barrier lowering (ΔΦb), and barrier height (Φb), are extracted using reverse bias C-2-V characteristics as a function of temperature.
Keywords:  MFS structures      Bismuth titanate      temperature dependent      activation energy      AC electrical conductivity  
Received:  26 December 2012      Revised:  10 April 2013      Accepted manuscript online: 
PACS:  85.30.Hi (Surface barrier, boundary, and point contact devices)  
  85.30.Kk (Junction diodes)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
Corresponding Authors:  Mert Yíldírím     E-mail:

Cite this article: 

Mert Yíldírím, Perihan Durmuş, Şemsettin Altíndal Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p–Si and Al/Bi4Ti3O12/p–Si structures by using the admittance spectroscopy method 2013 Chin. Phys. B 22 108502

[1] Yang H, Ren Q, Zhang G, Chow Y T, Chan H P and Chu P L 2005 Opt. Laser Technol. 37 259
[2] Lin X, Guan Q F, Liu Y and Li H B 2010 Chin. Phys. B 19 107701
[3] Wu Y Y, Wang X H and Li L T 2010 Chin. Phys. B 19 037701
[4] Jo W, Cho H J, Noh T W, Cho Y S, Kwun S I, Byun Y T and Kim S H 1994 Ferroelectrics 152 139
[5] Scott J F 1998 Ferroelectrics Rev. 1 1
[6] Joshi P C, Krupanidhi S B and Mansingh A 1992 J. Appl. Phys. 72 5517
[7] Fouscova A and Cross L E 1968 J. Appl. Phys. 39 2268
[8] Simoes A Z, Gonzalez A H M, Riccardi C S, Souza E C, Moura F, Zaghete M A, Longo E and Varela J A 2004 J. Electroceram. 13 65
[9] Cui C E, Huang P and Xu T X 2006 Acta Phys. Sin. 55 1464 (in Chinese)
[10] Lue Y G, Liang X L, Tan Y H, Zheng X J, Gong Y Q and He L 2011 Acta Phys. Sin. 60 027701 (in Chinese)
[11] Shao T Q, Ren T L,Wei C G,Wang X N, Li C X, Liu J S, Liu L T, Zhu J and Li Z J 2003 Integr. Ferroelectr. 57 1241
[12] Ishiwara H 2004 Top. Appl. Phys. 93 233
[13] Xu Z, Goux L, Kaczer B, Vander Meeren H, Wouters D J and Grouseneken G 2006 Microelectron. Eng. 83 2564
[14] BozgeyikMS, Cross J S, Ishiwara H and Shinozaki K 2010 Microelectron. Eng. 87 2173
[15] M Okuyama and Y Ishibashi 2005 Ferroelectric Thin Films Basic Properties and Device Physics for Memory Applications (New York: Springer)
[16] Wu S Y 1974 IEEE Trans. Electron. Dev. ED-21 499
[17] Parlaktürk F, Altíndal Ş, Tataroğlu A, Parlak M and Agasiev A A 2008 Microelectron. Eng. 85 81
[18] Yoon S M, Tokumitsu E and Ishiwara H 2000 IEEE Trans. Electron. Dev. 47 1630
[19] Gökçen M and Yíldírím M 2012 Chin. Phys. B 21 128502
[20] Tataroğlu A, Altíndal Ş, Aydemir U and Uslu H 2010 Optoelectron. Adv. Mat. 4 616
[21] Lin X, Guan Q F, Liu Y and Li H B 2010 Chin. Phys. B 19 107701
[22] Wu Y Y, Wang X H and Li L T 2010 Chin. Phys. B 19 037701
[23] Nicollian E H and Brews J R 1982 MOS (Metal Oxide Semiconductor) Physics and Technology (New York: Wiley)
[24] Walter T, Herberholz R, Muller C and Schock HW1996 J. Appl. Phys. 80 4411
[25] Yíldírím M, Eroğlu A, Altíndal Şand Durmuş P 2011 J. Optoelectron. Adv. M. 13 98
[26] Chattopadhyay P and Raychaudhuri B 1993 Solid State Electron. 36 605
[27] Gökçen M, Altuntaş H and Altíndal Ş2008 Optoelectron. Adv. Mat. 2 838
[28] Dökme İ and Altíndal Ş2011 IEEE Trans. Electron Dev. 58 4042
[29] Dökme İ, Durmuş P and Altíndal Ş2008 Nucl. Instrum. Method B 266 791
[30] Altíndal Şand Uslu H 2011 J. Appl. Phys. 109 074503
[31] Uslu H, Dökme İ, Afadiyeva I M and Altíndal Ş2010 Surf. Interface Anal. 42 807
[32] Xiao H and Huang S 2010 Mater. Sci. Semicond. Proc. 13 395
[33] Nicollian E H and Goetzberger A 1967 Bell. System Tech. J. 46 1055
[34] Bülbül M M, Altíndal Ş, Parlaktürk F and Tataroğlu A 2011 Surf. Interface Anal. 43 1561
[35] Pakma O, Serin N, Serin T and Altíndal Ş2009 J. Sol-Gel Sci. Technol. 50 28
[36] Bengi A, Altíndal Ş, Özçelik S, Agaliyeva S T and Mammadov T S 2008 Vacuum 83 276
[1] Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy
Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召). Chin. Phys. B, 2020, 29(4): 046801.
[2] Effects of CeO2 and nano-ZrO2 agents on the crystallization behavior and mechanism of CaO-Al2O3-MgO-SiO2-based glass ceramics
Yan Zhang(张艳), Yu Shi(石钰), Xuefeng Zhang(张雪峰), Fengxia Hu(胡凤霞), Jirong Sun(孙继荣), Tongyun Zhao(赵同云), Baogen Shen(沈保根). Chin. Phys. B, 2019, 28(7): 078107.
[3] Physical implications of activation energy derived from temperature dependent photoluminescence of InGaN-based materials
Jing Yang(杨静), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Xiang Li(李翔), Wei Liu(刘炜), Feng Liang(梁锋), Li-Qun Zhang(张立群), Hui Yang(杨 辉), Wen-Jie Wang(王文杰), Mo Li(李沫). Chin. Phys. B, 2017, 26(7): 077101.
[4] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[5] Electron trapping properties at HfO2/SiO2 interface, studied by Kelvin probe force microscopy and theoretical analysis
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(8): 087701.
[6] Magnetic transition behavior of perovskite manganites Nd0.5Sr0.3Ca0.2MnO3 polycrystalline
Ru Xing(邢茹), Su-Lei Wan(万素磊), Wen-Qing Wang(王文清), Lin Zheng(郑琳), Xiang Jin(金香), Min Zhou(周敏), Yi Lu(鲁毅), Jian-Jun Zhao(赵建军). Chin. Phys. B, 2016, 25(4): 047601.
[7] Hysteresis loop behaviors of ferroelectric thin films: A Monte Carlo simulation study
C. M. Bedoya-Hincapié, H. H. Ortiz-Álvarez, E. Restrepo-Parra, J. J. Olaya-Flórez, J. E. Alfonso. Chin. Phys. B, 2015, 24(11): 117701.
[8] GaSb p-channel metal-oxide-semiconductor field-effect transistor and its temperature dependent characteristics
Zhao Lian-Feng, Tan Zhen, Wang Jing, Xu Jun. Chin. Phys. B, 2015, 24(1): 018501.
[9] Field-dependent resistive transitions in Yba2Cu3O7-δ thin films: Influence of the pseudogap on vortex dynamics
S H Naqib, R S Islam. Chin. Phys. B, 2015, 24(1): 017402.
[10] Frequency and voltage-dependent electrical and dielectric properties of Al/Co-doped PVA/p-Si structures at room temperature
Ibrahim Yücedağ, Ahmet Kaya, Şemsettin Altındal, Ibrahim Uslu. Chin. Phys. B, 2014, 23(4): 047304.
[11] Effect of Re on stacking fault nucleation under shear strain in Ni by atomistic simulation
Liu Zheng-Guang, Wang Chong-Yu, Yu Tao. Chin. Phys. B, 2014, 23(11): 110208.
[12] In situ electrical resistance and activation energy of solid C60 under high pressure
Yang Jie, Liu Cai-Long, Gao Chun-Xiao. Chin. Phys. B, 2013, 22(9): 096202.
[13] Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification
Zhang Jie, Yuan Chao, Wang Jun-Qiao, Liang Er-Jun, Chao Ming-Ju. Chin. Phys. B, 2013, 22(8): 087201.
[14] Effect of 6H-SiC (1120) substrate on epitaxial graphene revealed by Raman scattering
Lin Jing-Jing, Guo Li-Wei, Jia Yu-Ping, Chen Lian-Lian, Lu Wei, Huang Jiao, Chen Xiao-Long. Chin. Phys. B, 2013, 22(1): 016301.
[15] The electrical properties of sulfur-implanted cubic boron nitride thin films
Deng Jin-Xiang,Qin Yang,Kong Le,Yang Xue-Liang,Li Ting,Zhao Wei-Ping,Yang Ping. Chin. Phys. B, 2012, 21(4): 047202.
No Suggested Reading articles found!