Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 108301    DOI: 10.1088/1674-1056/22/10/108301

A fiber-array probe technique for measuring the viscosity of a substance under shock compression

Feng Li-Peng, Liu Fu-Sheng, Ma Xiao-Juan, Zhao Bei-Jing, Zhang Ning-Chao, Wang Wen-Peng, Hao Bin-Bin
Laboratory of High Temperature and High Pressure Physics, Southwest Jiaotong University, Chengdu 610031, China
Abstract  A fiber-array probe is designed to measure the damping behavior of a small perturbed shock wave in an opaque substance, by which the effective viscosity of substance under the condition of high temperature and high pressure can be constrained according to the flyer-impact technique. It shows that the measurement precision of the shock arrival time by using this technique is within 2 ns. To easily compare with the results given by electrical pin technique, the newly developed method is used to investigate the effective viscosity of aluminum (Al). The shear viscosity coefficient of Al is determined to be 1700 Pa·s at 71 GPa with a strain rate of 3.6×106 s-1, which is in good agreement with the results of other methods. The advantage of the new technique over the electrical pin one is that it is applicable for studying the non-conductive substances.
Keywords:  shock wave      viscosity coefficient      fiber array      high temperatures and high pressures  
Received:  13 January 2013      Revised:  22 March 2013      Published:  30 August 2013
PACS:  83.85.Jn (Viscosity measurements)  
  62.50.-p (High-pressure effects in solids and liquids)  
  66.20.-d (Viscosity of liquids; diffusive momentum transport)  
  42.15.-i (Geometrical optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974160 and 11002120) and the Fundamental Research Funds for the Central Universities (Grant No. SWJTU12CX085).
Corresponding Authors:  Liu Fu-Sheng     E-mail:

Cite this article: 

Feng Li-Peng, Liu Fu-Sheng, Ma Xiao-Juan, Zhao Bei-Jing, Zhang Ning-Chao, Wang Wen-Peng, Hao Bin-Bin A fiber-array probe technique for measuring the viscosity of a substance under shock compression 2013 Chin. Phys. B 22 108301

[1] Miller G H and Ahrens T J 1991 Rev. Mod. Phys. 63 919
[2] Mineev V N and Funtikov A I 2004 Phys. Usp. 47 671
[3] Bi Y, Tan H and Jing F Q 2002 Chin. Phys. Lett. 19 243
[4] Rutter M D, Secco R A and Liu H J 2002 Phys. Rev. B 66 536
[5] Grady D E 1981 Appl. Phys. Lett. 38 825
[6] Kushiro I 1976 Geophys. Res. 81 6347
[7] Sakharov A D, Zaidel R M, Mineev V N and Oleinik A G 1965 Sov. Phys. Doklady 9 1091
[8] Liu F S, Yang M X, Li Q W, Chen J X and Jing F Q 2005 Chin. Phys. Lett. 22 747
[9] Ma X J, Liu F S, Sun Y Y, Zhang M J, Peng X J and Li Y H 2011 Chin. Phys. Lett. 28 044704
[10] Li Y L, Liu F S, Ma X J, Li Y L, Yu M, Zhang J C and Jing F Q 2009 Rev. Sci. Instrum. 80 139
[11] Ma X J, Liu F S, Zhang M J and Sun Y Y 2011 Chin. Phys. B 20 068301
[12] Li Y L, Liu F S, Zhang M J, Ma X J, Li Y L and Zhang J C 2009 Chin Phys. Lett. 26 038301
[13] Ma X J, Liu F S and Jing F Q 2010 Sci. China Ser. G 53 802
[14] Jing F Q 1999 Experiment Equation of State, 2nd edn. (Beijing: Science Press) p. 239, pp. 204-209 (in Chinese)
[15] Marsh S P 1980 LASL Shock Hugoniot Data (Berkley: University of California Press) p. 260
[16] Shi S C, Chen P S and Huang Y 1991 J. High Press. Phys. 3 5
[1] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[2] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[3] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[4] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[5] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[6] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
[7] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[8] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[9] Laser-driven flier impact experiments at the SG-III prototype laser facility
Shui Min, Chu Gen-Bai, Xin Jian-Ting, Wu Yu-Chi, Zhu Bin, He Wei-Hua, Xi Tao, Gu Yu-Qiu. Chin. Phys. B, 2015, 24(9): 094701.
[10] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue, Wang Xiang-Da, Liu Xiao-Zhou, Gong Xiu-Fen. Chin. Phys. B, 2015, 24(1): 014301.
[11] Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation
Liu Tian-Hang, Hao Zuo-Qiang, Gao Xun, Liu Ze-Hao, Lin Jing-Quan. Chin. Phys. B, 2014, 23(8): 085203.
[12] The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2013, 22(5): 055202.
[13] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao. Chin. Phys. B, 2013, 22(12): 124102.
[14] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[15] Fracture characteristics of bulk metallic glass under high speed impact
Sun Bao-Ru,Zhan Zai-Ji,Liang Bo,Zhang Rui-Jun,Wang Wen-Kui. Chin. Phys. B, 2012, 21(5): 056101.
No Suggested Reading articles found!