Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107802    DOI: 10.1088/1674-1056/22/10/107802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The effect of an optical pump on the absorption coefficient of magnesium-doped near-stoichiometric lithium niobate in terahertz range

Zuo Zhi-Gaoa b, Ling Fu-Rib, Ma De-Caic, Wu Liangd, Liu Jin-Songa, Yao Jian-Quana d
a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
b School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
c Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou 510275, China;
d College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
Abstract  The absorption coefficient of magnesium-doped near-stoichiometric lithium niobate crystal is measured by terahertz time-domain spectroscopy in a frequency range of 0.2 THz-0.9 THz at room temperature. The absorption coefficient is modulated by external optical pump fields. Experimental results show that the absorption coefficient of near-SLN:Mg crystal is approximately in a range of 22 cm-1-35 cm-1 in a frequency range of 0.2 THz-0.9 THz and tunable up to nearly 15%. Further theoretical analysis reveals that the variation of absorption coefficient is related to the number of light-induced carriers, domain reversal process, and OH- absorption in this crystal.
Keywords:  near-stoichiometric LiNbO3:Mg      terahertz      absorption coefficient      domain reversal  
Received:  08 March 2013      Revised:  02 April 2013      Published:  30 August 2013
PACS:  78.20.Mg (Photorefractive effects)  
  42.70.Mp (Nonlinear optical crystals)  
  87.50.U-  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974063, 61205096, and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 02-16-230008, 2010CDA001, and 2012FFA074), the Research Foundation of Huazhong University of Science and Technology, China (Grant No. 01-09-230904), the Ph. D. Program Foundation of Ministry of Education of China (Grant No. 20100142110042), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2010MS041 and 2011TS001).
Corresponding Authors:  Ling Fu-Ri     E-mail:  lingfuri@163.com

Cite this article: 

Zuo Zhi-Gao, Ling Fu-Ri, Ma De-Cai, Wu Liang, Liu Jin-Song, Yao Jian-Quan The effect of an optical pump on the absorption coefficient of magnesium-doped near-stoichiometric lithium niobate in terahertz range 2013 Chin. Phys. B 22 107802

[1] Bradley F and Zhang X C 2003 Physics 32 286 (in Chinese)
[2] Ding X, Zhang S M, Ma H M, Pang M, Yao J Q and Li Z 2008 Chin. Phys. B 17 1674
[3] Ding X, Sheng Q, Chen N, Yu X Y, Wang R, Zhang H, Wen W Q, Wang P and Yao J Q 2009 Chin. Phys. B 18 4314
[4] Shen S K, Yang A Y, Zuo L, Cui J M and Sun Y N 2011 Chin. Phys. B 20 104206
[5] Furukawa Y, Kitamura K, Takekawa S, Niwa K and Hatano H 1998 Opt. Lett. 23 1892
[6] Furukawa Y, Kitamura K, Alexandrovski A, Route R K, Fejer M M and Foulon G 2001 Appl. Phys. Lett. 78 1970
[7] Pálfalvi L, Hebling J, Almási G, Péter Á and Polgár K 2003 J. Opt. A: Pure Appl. Opt. 5 S280
[8] Wang W J, Kong Y F, Liu H D, Hu Q, Liu S G, Chen S L and Xu J Q 2009 J. Appl. Phys. 105 043105
[9] Chen X J, Zhu D S, Li B, Ling T and Wu Z K 2001 Opt. Lett. 26 998
[10] Chen X J, Li B, Xu J J, Zhu D S, Pan S H and Wu Z K 2001 J. Appl. Phys. 90 1516
[11] Galambos L, Orlov S S, Hessenlink L, Furukawa Y, Kitamura K and Takekawa S 2001 J. Crystals Growth 229 228
[12] Abdi F, Aillerie M, Bourson P, Fontana M D and Polgar K 1998 J. Appl. Phys. 84 2251
[13] Sun D L, Hang Y, Zhang L H, Qian X B, Li S F, Xu J, Luo G Z, Zhu S N, Zhu Y Y, Lim P K, Hung W W and Tang T B 2002 J. Synth. Crystals 31 314 (in Chinese)
[14] Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L and Bing P B 2011 Chin. Phys. B 20 054207
[15] Polgár K, Péter Á, Kovács L, Corradi G and Szaller Zs 1997 J. Crystals Growth 177 211
[16] Bordui P F, Norwood R G, Jundt D H and Fejer M M 1992 J. Appl. Phys. 71 875
[17] Brian S 2008 "Miniature Terahertz Time-Domain Spectrometry", Ph. D. dissertation (New York: Rensselaer Polytechnic Institute)
[18] Pálfalvi L, Hebling J, Kuhl J, Péter Á and Polgár K 2005 J. Appl. Phys. 97 123505
[19] Chen Y C, Wu L, Chou Y P and Tsai Y T 2000 Mater. Sci. Eng. B 76 95
[20] Johnson K M 1962 J. Appl. Phys. 33 2826
[21] Smith R G, Fraser D B, Denton R T and Rich T C 1968 J. Appl. Phys. 39 4600
[22] Cabrera J M, Olivares J, Carrascosa M, Rams J, Müller R and Diéguez E 1996 Adv. Phys. 45 349
[23] Wöhlecke M and Kovács L 2001 Crit. Rev. Solid State Mater. Sci. 26 1
[24] Kim I W, Park B C, Jin B M, Bhalla A S and Kim J W 1995 Mater. Lett. 24 157
[25] Heinemeyer U, Wengler M C and Buse K 2006 Appl. Phys. Lett. 89 112910
[26] Miller C A 1967 Brit. J. Appl. Phys. 18 1689
[27] Wu L, Ling F R, Zuo Z G, Liu J S and Yao J Q 2011 J. Opt. 13 105501
[28] Chen F S 1969 J. Appl. Phys. 40 3389
[29] Wu L, Ling F R, Zuo Z G, Liu J S and Yao J Q 2012 Chin. Phys. B 21 017802
[1] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[2] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[3] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[4] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[5] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[6] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[7] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[8] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[9] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[10] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[11] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[12] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[13] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[14] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[15] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
No Suggested Reading articles found!