Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104205    DOI: 10.1088/1674-1056/22/10/104205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An all-polarization-maintaining repetition-tunable erbium-doped passively mode-locked fiber laser

Zhao Guang-Zhena, Xiao Xiao-Shenga, Meng Feib, Mei Jia-Weia, Yang Chang-Xia
a State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China;
b Division of Time and Frequency Metrology, National Institute of Metrology, Beijing 100013, China
Abstract  An environmentally stable, repetition rate tunable, all-polarization-maintaining, Er-doped pulse fiber laser with a single-wall carbon nanotubes saturated absorber is demonstrated. The ring laser cavity includes a delay line enabling a tunable repetition rate to vary from 35.52 MHz to 35.64 MHz with continuous mode-locked operation. The laser output parameters confirm that the tunable mode-locked operations are stable. High environmental stability is also confirmed by the-130 dBc/Hz low phase noise, a 70-dB signal-to-noise ratio of radio frequency signals, a low amplitude fluctuation of 5.76×10-4, and a low fluctuation of repetition rate of 12 Hz. The laser shows a high degree of polarization of 93%.
Keywords:  fiber laser      modulation      tuning and mode locking      nanotubes     
Received:  30 November 2012      Published:  30 August 2013
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  61.46.Fg (Nanotubes)  
Corresponding Authors:  Yang Chang-Xi     E-mail:  cxyang@tsinghua.edu.cn

Cite this article: 

Zhao Guang-Zhen, Xiao Xiao-Sheng, Meng Fei, Mei Jia-Wei, Yang Chang-Xi An all-polarization-maintaining repetition-tunable erbium-doped passively mode-locked fiber laser 2013 Chin. Phys. B 22 104205

[1] Schibli T R, Minoshima K, Hong F L, Inaba H, Onae A and Matsumoto H 2004 Opt. Lett. 29 2467
[2] Washburn B R, Fox R W, Newbury N R, Nicholson J W, Feder K, Westbrook P S and Jorgensen C G 2004 Opt. Express 12 4999
[3] Hundertmark H, Kracht D, Engelbrecht M, Wandt D and Fallnich C 2004 Opt. Express 12 3178
[4] Chong A, Renninger W H and Wise F W 2008 Opt. Lett. 33 1071
[5] Okhotnikov O, Grudinin A and Pessa M 2004 New J. Phys. 6 22
[6] Nishizawa N, Seno Y, Sumimura K, Sakakibara Y, Itoga E, Kataura H and Itoh K 2008 Opt. Express 16 9429
[7] Senoo Y, Nishizawa N, Sakakibara Y, Sumimura K, Itoga E, Kataura H and Itoh K 2009 Opt. Express 17 20233
[8] Senoo Y, Nishizawa N, Sakakibara Y, Sumimura K, Itoga E, Kataura H and Itoh K 2010 Opt. Express 18 20673
[9] Ren G J, Zhang Q, Wang P and Yao J Q 2003 Acta Phys. Sin. 52 3917 (in Chinese)
[10] Sobon G, Sotor J and Abramski K M 2012 Laser Phys. Lett. 9 581
[11] Sotor J, Sobon G and Abramski K M 2012 Opt. Lett. 37 2166
[12] Ren G J, Wei Z and Yao J Q 2009 Acta Phys. Sin. 58 941 (in Chinese)
[13] Dong X L, Xiao H, Ma Y X, Zhou P and Guo S F 2012 Acta Phys. Sin. 61 064207 (in Chinese)
[14] Liu Y S, Zhang J G, Chen G F and Bai J 2010 J. Opt. 12 095204
[15] Jones D J, Nelson L E, Haus H A and Ippen E P 1997 IEEE. J. Sel. Top. Quant. 3 1076
[16] Gui L L, Yang X, Zhao G Z, Yang X, Xiao X S, Zhu J S and Yang C X 2011 Appl. Opt. 50 110
[17] Tang D Y, Zhao L M, Zhao B and Liu A Q 2005 Phys. Rev. A 72 043816
[18] Liu X M 2011 Phys. Rev. A 84 023835
[19] Sun Z P, Hasan T, Wang F Q, Rozhin A G, White I H and Ferrari A C 2010 Nano Res. 3 404
[20] Chong A, Renninger W H and Wise F 2008 Opt. Lett. 33 1071
[21] Midrio M and Wabnitz S 1996 Phys. Rev. E 54 5743
[22] Holman K W, Jones R J, Marian A, Cundiff S T and Ye J 2003 Opt. Lett. 28 851
[23] Ding E and Kutz J N 2009 J. Opt. Soc. Am. B 26 1400
[24] Blow K J, Doran N J and David W 1987 Opt. Lett. 12 202
[25] Nicholson J W and Andrejco M 2006 Opt. Express 14 8160
[26] Stumpf M C, Pekarek S, Oehler A E, Südmeyer H T, Dudley J M and Keller U 2010 Appl. Phys. B 99 401
[27] Newbury R N and Swann W C 2007 J. Opt. Soc. Am. B 24 1756
[1] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[2] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[3] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[4] Visible-light all-fiber vortex lasers based on mode selective couplers
Chuchu Dong(董楚楚), Jinhai Zou(邹金海), Hongjian Wang(王鸿健), Han Yao(尧涵), Xianglong Zeng(曾祥龙), Yikun Bu(卜轶坤), Zhengqian Luo(罗正钱). Chin. Phys. B, 2020, 29(9): 094204.
[5] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[6] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[7] M2-factor of high-power laser beams through a multi-apertured ABCD optical system
Xiangmei Zeng(曾祥梅), Meizhi Zhang(张美志), Dongmei Cao(曹冬梅), Dingyu Sun(孙鼎宇), Hua Zhou(周花). Chin. Phys. B, 2020, 29(6): 064206.
[8] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[9] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[10] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[11] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[12] Structure and tribological properties of Si/a-C:H(Ag) multilayer film in stimulated body fluid
Yan-Xia Wu(吴艳霞), Yun-Lin Liu(刘云琳), Ying Liu(刘颖), Bing Zhou(周兵), Hong-Jun Hei(黑鸿君), Yong Ma(马永), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(11): 116101.
[13] Linear and nonlinear propagation characteristics of multi-Gaussian laser beams
Naveen Gupta and Sandeep Kumar. Chin. Phys. B, 2020, 29(11): 114210.
[14] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹), Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[15] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), Chunzhen Fan(范春珍). Chin. Phys. B, 2020, 29(10): 104210.
No Suggested Reading articles found!