Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100504    DOI: 10.1088/1674-1056/22/10/100504
GENERAL Prev   Next  

Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance

Wang Dong-Feng, Zhang Jin-Ying, Wang Xiao-Yan
Hebei Engineering Research Center of Simulation & Optimized Control for Power Generation(North China Electric Power University), Baoding 071003, China
Abstract  Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen’s chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.
Keywords:  fractional-order chaotic system      modified projective synchronization      uncertainty      disturbance  
Received:  04 March 2013      Revised:  15 April 2013      Published:  30 August 2013
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61203041) and the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49).
Corresponding Authors:  Zhang Jin-Ying     E-mail:  k.ying_zhang@163.com

Cite this article: 

Wang Dong-Feng, Zhang Jin-Ying, Wang Xiao-Yan Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance 2013 Chin. Phys. B 22 100504

[1] Bagley R L and Calico R A 2012 Journal of Guidance, Control, and Dynamics 14 304
[2] Ichise M, Nagayanagi Y and Kojima T 1971 J. Electroanal. Chem. Interfacial Electrochem. 33 253
[3] Ezzat M A 2011 Appl. Math. Mod. 35 4965
[4] Laskin N 2000 Physica A 287 482
[5] Sun H, Abdelwahab A and Onaral B 1984 IEEE Trans. Autom. Control 29 441
[6] Podlubny I 1999 Fractional Differential Equation (New York: Academic Press) pp. 41-48, 71
[7] Vinagre B M, Podlubny I, Hernandez A and Feliu V 2000 Fractional Calculus and Applied Analysis 3 231
[8] Yang Q G and Zeng C B 2010 Commun. Nonlinear Sci. Numer. Simul. 15 4041
[9] Ge Z M and Ou C Y 2007 Chaos, Solitons and Fractals 34 262
[10] Zhu H, Zhou S B and Zhang J 2009 Chaos, Solitons and Fractals 39 1595
[11] Lu J G and Chen G R 2006 Chaos, Solitons and Fractals 27 685
[12] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[13] Aghababa M P and Akbari M E 2012 Appl. Math. Comput. 218 5757
[14] Wei W, Li D H and Wang J 2010 Chin. Phys. B 19 040507
[15] Pourgholi M and Majd V J 2011 Chin. Phys. B 20 120503
[16] Duan Z S and Chen G R 2012 Chin. Phys. B 21 080506
[17] Zhao L, Liao X F, Xiang T and Xiao D 2009 Chin. Phys. Lett. 26 060502
[18] Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506
[19] Dong E Z, Chen Z Q, Chen Z P and Ni J Y 2012 Chin. Phys. B 21 030501
[20] Hua C C and Guan X P 2004 Chin. Phys. Lett. 21 1441
[21] Pei W, Lü J H and Ogorzalek M J 2012 Neurocomputing 78 155
[22] Chen Y, Lü J H and Lin Z 2013 Automatica (http://dx.doi.org/10.1016/j.automatica. 2013.02.021.)
[23] Zhu J D, Lü J H and Yu X H 2013 IEEE Trans. Circ. Syst. Regul. Pap. 60 199
[24] Lü J H, Yu X H, Chen G R and Cheng D Z 2004 IEEE Trans. Circ. Syst. Regul. Pap. 51 787
[25] Lü J H and Chen G R 2005 IEEE Trans. Autom. Control 50 841
[26] Liu H, Lu J A, Lü J H and Hill D J 2009 Automatica 45 1799
[27] Zhou J, Lu J A and Lü J H 2006 IEEE Trans. Autom. Control 51 652
[28] Wang Z, Huang X and Zhao Z 2012 Nonlinear Dyn. 69 999
[29] Wang X Y, Zhang X P and Ma C 2012 Nonlinear Dyn. 69 511
[30] Chen L P, Wei S B, Chai Y and Wu R C 2012 Math. Probl. Eng. 2012 1
[31] Martinez-Martinez R, Mata-Machuca J L, Martinez-Guerra R, Leon J A and Fernandez-Anaya G 2011 Appl. Math. Comput. 218 3338
[32] Zheng S 2012 Appl. Math. Comput. 218 5891
[33] Xu J Q Proceedings of the 30th Chinese Control Conference, July 22-24, 2011, Yantai, China, pp. 2423-2428
[34] Zhou P and Ding R 2012 Indian J. Phys. 86 497
[35] Yang C C 2012 J. Franklin Inst. 349 349
[36] Zhang R X and Yang S P 2012 Nonlinear Dyn. 69 983
[37] Xiang W and Chen F Q 2011 Commun. Nonlinear Sci. Numer. Simul. 16 2970
[38] Li G H 2007 Chaos, Solitons and Fractals 32 1786
[39] Li Y, Chen Y Q and Podlubny I 2010 Comput. Math. Appl. 59 1810
[40] Ye M Y 2005 Acta Phys. Sin. 54 30 (in Chinese)
[41] Li C P and Yan J P 2007 Chaos, Solitons and Fractals 32 751
[42] Caponetto R, Dongola G and Fortuna L 2010 Fractional Order Systems: Modeling and Control Applications (Hackensack: World Scientific) p. 62
[43] Li C G and Chen G R 2004 Chaos, Solitons and Fractals 22 549
[44] Chen G R and Ueta T 1999 Int. J. Bifur. Chaos Appl. Sci. Eng. 9 1465
[45] Chen Y, Lü J H and Yu X H 2011 Sci. China: Technol. Sci. 54 2014
[1] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[2] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[3] Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(5): 057305.
[4] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[5] Reduction of entropy uncertainty for qutrit system under non-Markov noisy environment
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(4): 040306.
[6] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[7] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, M Nassik. Chin. Phys. B, 2020, 29(11): 110301.
[8] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪), Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[9] On the time-independent Hamiltonian in real-time and imaginary-time quantum annealing
Jie Sun(孙杰), Songfeng Lu(路松峰). Chin. Phys. B, 2020, 29(10): 100303.
[10] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[11] Influence of warm eddies on sound propagation in the Gulf of Mexico
Yao Xiao(肖瑶), Zhenglin Li(李整林), Jun Li(李鋆), Jiaqi Liu(刘佳琪), Karim G Sabra. Chin. Phys. B, 2019, 28(5): 054301.
[12] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[13] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[14] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[15] Uncertainty relations in the product form
Xiaofen Huang(黄晓芬), Ting-Gui Zhang(张廷桂), Naihuan Jing(景乃桓). Chin. Phys. B, 2018, 27(7): 070302.
No Suggested Reading articles found!