Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087102    DOI: 10.1088/1674-1056/21/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Energetics and electronic structure of refractory elements in the dislocation of NiAl

Chen Li-Quna, Peng Xiao-Fanga, Yu Taob
a College of Sciences, Central South University of Forestry & Technology, Changsha 410004, China;
b Central Iron and Steel Research Institute, Beijing 100081, China
Abstract  Using the DMol and the discrete variational method within the framework of density functional theory, we study the alloying effects of Nb, Ti, and V in the [100] (010) edge dislocation core of NiAl. We find that when Nb (Ti, V) is substituted for Al in the center-Al, the binding energy of the system reduces 3.00 eV (2.98 eV, 2.66 eV). When Nb (Ti, V) is substituted for Ni in the center-Ni, the binding energy of the system reduces only 0.47 eV (0.16 eV, 0.09 eV). This shows that Nb (Ti, V) exhibits a strong Al site preference, which is in agreement with experimental and other theoretical results. The analyses of the charge distribution, the interatomic energy and the partial density of states show that some charge accumulations appear between impurity atom and Ni atoms, and the strong bonding states are formed between impurity atom and neighbouring host atoms due mainly to the hybridization of 4d5s(3d4s) orbitals of impurity atom and 3d4s4p orbitals of host Ni atoms. The impurity induces a strong pinning effect on the [100] (010) edge dislocation motion in NiAl, which is related to the mechanical properties of NiAl alloy.
Keywords:  electronic structure      dislocation      intermetallic compounds      impurity  
Received:  12 January 2012      Revised:  12 February 2012      Published:  01 July 2012
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.55.Ak (Metals, semimetals, and alloys)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
  61.72.sh (Impurity distribution)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606402).
Corresponding Authors:  Chen Li-Qun     E-mail:  ldclqun@163.com

Cite this article: 

Chen Li-Qun, Peng Xiao-Fang, Yu Tao Energetics and electronic structure of refractory elements in the dislocation of NiAl 2012 Chin. Phys. B 21 087102

[1] Peter L and Raimund P 2009 Intermetallics 17 675
[2] Misra A and Gibala R 2000 Intermetallics 8 1025
[3] Misra A, Wu Z L, Kush M T and Gibala R 1997 Mater. Sci. Eng. A 239-240 75
[4] Ramassundaram P, Bowman R and Soboyejo W 1998 Mater. Sci. Eng. A 248 132
[5] Medvedeva N I, Gornostyrev Yu N, Kontsevoi O Yu and Freeman A J 2004 Acta Materialia 52 675
[6] Ball A and Smallman R E 1966 Acta Metall. 14 1349
[7] Takasugi T, Kishino J and Hanada S 1993 Acta Metall. Mater. 41 1009
[8] Hu J and Lin D L 2008 Mater. Sci. Eng. A 490 157
[9] Yang C 2006 Int. J. Mech. Sci. 48 950
[10] Ghosh B and Crimp M A 1997 Mater. Sci. Eng. A 239-240 142
[11] Ebrahimi F and Shrivastava S 1998 Acta Mater. 46 1493
[12] Pollock T M, Lu D C, Shi X and Eow K 2001 Mater. Sci. Eng. A 317 241
[13] Fu C L and Zou J 1996 Acta Mater. 44 1471
[14] Kontsevoi O Yu, Gornostyrev Yu N, Freeman A J, Katsnelson M I and Trefilov A V 2001 Philos. Mag. Lett. 81 455
[15] Chen L Q and Yu T 2011 Sci. Chin.: Phys. Mech. & Astron. 54 815
[16] Miracle D B 1993 Acta Metall. Mater. 41 649
[17] Wang Y L, Jones I P, and Smallman R E 2006 Intermetallics 14 800
[18] Delley B 1991 J. Chem. Phys. 94 7245
[19] Delley B 1990 J. Chem. Phys. 92 508
[20] Ellis D E and Painter G S 1970 Phys. Rev. B 2 2887
[21] Guenzburger D and Ellis D E 1992 Phys. Rev. B 46 285
[22] Voter A F and Chen S P 1987 High Temperature Ordered Intermetallic Alloys, eds by Siegel R W, Weertman J R and Sundan R MRS Symposia Proceeding No. 82 (Pittsburgh: Materials Research Society) p. 175
[23] Zhang H, Wu H Y, Chen Y Y and Cheng X L 2006 Chin. Phys. 15 428
[24] Zhu T and Wang C Y 2006 Chin. Phys. 15 2089
[25] Chen L Q, Wang C Y and Yu T 2008 Chin. Phys. B 17 662
[26] Chen L Q, Wang C Y and Yu T 2006 J. Appl. Phys. 100 023715
[27] Wang S Y, Wang C Y, Sun J H, Duan W H and Zhao D L 2001 Phys. Rev. B 65 035101
[28] von Barth U and Hedin L 1972 J. Phys. C 5 1629
[29] Yan J A, Wang C Y, Duan W H and Wang S Y 2004 Phys. Rev. B 69 214110
[30] Allaverdova N V, Portnoy V K, Kucherenko L A, Ruban A V and Bogdanov V I 1988 J. Less-Common Metals 141 191
[31] Duncan A J, Kaufman M J, Liu C T and Miller M K 1994 Appl. Surf. Sci. 76-77 155
[32] Bozzolo G, Noebe R D and Honecy F 2000 Intermetallics 8 7
[33] Wang C Y and Zhao D L 1994 Mater. Res. Soc. Symp. Proc. 318 571
[34] Wang C Y 1995 Defect Diffus. Forum 125-126 79
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[7] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[8] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[9] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[10] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[11] Modification of the Peierls-Nabarro model for misfit dislocation
Shujun Zhang(张淑君), Shaofeng Wang(王少峰). Chin. Phys. B, 2020, 29(5): 056102.
[12] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[13] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[14] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[15] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
No Suggested Reading articles found!