Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 075204    DOI: 10.1088/1674-1056/21/7/075204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure

Li Xue-Chen(李雪辰), Niu Dong-Ying(牛东莹), Xu Long-Fei(许龙飞), Jia Peng-Ying(贾鹏英), and Chang Yuan-Yuan(常媛媛)
College of Physics Science & Technology, Hebei University, Baoding 071002, China
Abstract  The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one-dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low, while glow-like discharge occurs at high voltage. For the one discharge pulse per half voltage cycle, the maximum of electron density appears near the anode at the beginning of the discharge, which corresponds to a Townsend discharge mode. The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent, which indicates the formation of a cathode-fall region. Therefore, the discharge has a transition from Townsend mode to glow discharge mode during one discharge pulse, which is consistent with previous experimental results.
Keywords:  dielectric barrier discharge      atmosphere pressure glow discharge      discharge mode      Townsend discharge  
Received:  28 November 2011      Revised:  20 January 2012      Accepted manuscript online: 
PACS:  52.80.Tn (Other gas discharges)  
  52.80.Hc (Glow; corona)  
  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10805013 and 51077035), the Funds for Distinguished Young Scientists of Hebei University, China (Grant No. A2012201045) the Key Project of Ministry of Education of China (Grant No. 210014), the Natural Science Foundation of Hebei province, China (Grant Nos. A2009000149 and A2011201132), and the Outstanding Youth Project of Education Department of China (Grant No. Y2011120).
Corresponding Authors:  Li Xue-Chen     E-mail:  xcli@mail.hbu.edu.cn

Cite this article: 

Li Xue-Chen(李雪辰), Niu Dong-Ying(牛东莹), Xu Long-Fei(许龙飞), Jia Peng-Ying(贾鹏英), and Chang Yuan-Yuan(常媛媛) Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure 2012 Chin. Phys. B 21 075204

[1] Michael A. Lieberman 2005 Principles of Plasma Discharges and Materials Processing (published online) (New Jersey: John Wiley & Sons)
[2] Kim J Y, Kim S O, Wei Y Z and Li J H 2010 Appl. Phys. Lett. 96 203701
[3] Ticos C M, Jepu I, Lungu C P, Chiru P, Zaroschi V and Lungu A M 2010 Appl. Phys. Lett. 97 011501
[4] Li X C, Jia P Y, Yuan N, Fang T Z and Wang L 2011 Phys. Plasmas 18 043505
[5] Kulikovsky A A 1994 J. Phys. D 27 2556
[6] Wang Y H and Wang D Z 2004 Chin. Phys. Lett. 21 2234
[7] Shi H, Wang Y H and Wang D Z 2008 Phys. Plasmas 15 122306
[8] Liu F C, Zhang D Z and Wang D Z 2010 Phys. Plasma 17 103508
[9] Zhang H Y, Wang D Z and Wang X G 2007 Chin. Phys. 16 1089
[10] Luo H Y, Liang Z, Lü B, Wang X X, Guan Z C and Wang L M 2007 Appl. Phys. Lett. 91 221504
[11] Ward A L 1962 J. Appl. Phys. 33 2789
[12] Deloche R, Monchicourt P, Cheret M and Lambert F 1976 Phys. Rev. A 13 1140
[13] Xu X J 1996 Discharge Physics of Gas (Shanghai: Fu-dan University Press) p. 277 (in Chinese)
[14] Scharferter D L and Gummel H K 1969 IEEE Trans. Electron. Devices ED-16 64
[15] Kulikovsky A A 1995 J. Comput. Phys. 119 149
[16] Li X C, Zhao N, Fang T Z, Liu Z H, Li L C and Dong L F 2008 Plasma Source Sci. Technol. 17 015017
[17] Trunec D, Brablec A and Stastny F 1998 Contrib Plasma Phys. 38 435
[18] Dong L F, Mao Z G and Ran J X 2005 Chin. Phys. 14 1618
[19] Golubovsii Y B, Majorov V A, Behnke J and Behnke J F 2002 J. Phys. D 35 751
[1] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[2] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[3] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[4] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[5] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[6] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[7] Influence of vibration on spatiotemporal structure of the pattern in dielectric barrier discharge
Rong Han(韩蓉), Li-Fang Dong(董丽芳), Jia-Yu Huang(黄加玉), Hao-Yang Sun(孙浩洋), Bin-Bin Liu(刘彬彬), Yan-Lin Mi(米彦霖). Chin. Phys. B, 2019, 28(7): 075204.
[8] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
[9] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[10] Exploration of the Townsend regime by discharge light emission in a gas discharge device
Hilal Yucel Kurt. Chin. Phys. B, 2014, 23(1): 015201.
[11] Spontaneous transition of one-dimensional plasma photonic crystal's orientation in dielectric barrier discharge
Fan Wei-Li (范伟丽), Dong Li-Fang (董丽芳). Chin. Phys. B, 2013, 22(1): 014213.
[12] Aspects of the upstream region in a plasma jet with dielectric barrier discharge configurations
Li Xue-Chen(李雪辰), Jia Peng-Ying(贾鹏英), Yuan-Ning(袁宁), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(4): 045204.
[13] Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge
Shang Wan-Li(尚万里), Zhang Yuan-Tao(张远涛), Wang De-Zhen(王德真), Sang Chao-Feng(桑超峰), Jiang Shao-En(江少恩), Yang Jia-Min(杨家敏), Liu Shen-Ye(刘慎业), and M.~G. Kong. Chin. Phys. B, 2011, 20(1): 015201.
[14] Characterizing uniform discharge in atmospheric helium by numerical modelling
Lü Bo(吕博), Wang Xin-Xin(王新新), Luo Hai-Yun(罗海云), and Liang Zhuo(梁卓). Chin. Phys. B, 2009, 18(2): 646-651.
[15] Theoretical analysis of ion kinetic energies and DLC film deposition by CH4+Ar (He) dielectric barrier discharge plasmas
Liu Yan-Hong(刘艳红), Zhang Jia-Liang(张家良), Ma Teng-Cai(马腾才), Li Jian(李建), and Liu Dong-Ping(刘东平). Chin. Phys. B, 2007, 16(9): 2809-2813.
No Suggested Reading articles found!