Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057301    DOI: 10.1088/1674-1056/21/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improving lithographic masks with the assistance of indentations

Guo Ying-Nana,Li Xu-Fengb,Pan Shia,Wang Qiaoa,Wang Shuoa,Wu Yong-Kuana
1. School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China;
2. School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
Abstract  Indentations etched on the output surface of a metallic mask are proposed to produce fine lithographic patterns with a resolution of 500 nm using the finite-difference time domain (FDTD) method. Such a designed mask is capable of enhancing near field lithography (NFL) resolution more than three times compared with the structure without indentations. The simulation results show that the interference disturbance between the adjacent lithographic channels can be eliminated efficiently by employing the indentations. As a straightforward consequence, the channel-to-channel interspaces can be shortened significantly, maintaining a uniform field distribution and high contrast.
Keywords:  surface plasmons      lithography      finite-difference time domain (FDTD) method  
Received:  03 September 2011      Revised:  27 April 2012      Published:  01 April 2012
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974025).

Cite this article: 

Guo Ying-Nan,Li Xu-Feng,Pan Shi,Wang Qiao,Wang Shuo,Wu Yong-Kuan Improving lithographic masks with the assistance of indentations 2012 Chin. Phys. B 21 057301

[1] Chou S Y, Krauss P R and Renstrom P J 1996 Science 272 85
[2] Bailey T, Choi B, Colburn M, Meissl M, Shaya S, Ekerdt J, Sreenivasan S and Willson C 2000 J. Vac. Sci. Technol. B 18 3572
[3] Piner R D, Zhu J, Xu F, Hong S and Mirkin C A 1999 Science 283 661
[4] Tseng A A, Chen K, Chen C D and Ma K J 2003 Electronics Packaging Manufacturing, IEEE Transactions on 26 141
[5] Melngailis J, Mondelli A, Berry III I L and Mohondro R 1998 J. Vac. Sci. Technol. B 16 927
[6] Gwyn C, Stulen R, Sweeney D and Attwood D 1998 J. Vac. Sci. Technol. B 16 3142
[7] Silverman J P 1998 J. Vac. Sci. Technol. B 16 3137
[8] Johnson K S, Thywissen J H, Dekker N H, Berggren K K, Chu A P, Younkin R and Prentiss M 1998 Science 280 1583
[9] Srituravanich W, Fang N, Sun C, Luo Q and Zhang X 2004 Nano Lett. 4 1085
[10] Luo X and Ishihara T 2004 Appl. Phys. Lett. 84 4780
[11] Luo X and Ishihara T 2004 Opt. Express 12 3055
[12] Liu Z, Wei Q and Zhang X 2005 Nano Lett. 5 957
[13] Xu T, Fang L, Zeng B, Liu Y, Wang C, Feng Q and Luo X 2009 J. Opt. 11 085003
[14] Zeng B, Pan L, Liu L, Fang L, Wang C and Luo X 2009 J. Opt. 11 125003
[15] Li X, Pan S, Wang Q, Guo Y and Wu S 2010 J. Opt. 12 115504
[16] Ge W, Wang C, Xue Y, Cao B, Zhang B and Xu K 2011 Opt. Express 19 6714
[17] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin:Springer-Verlag) p. 136
[18] Liu Z, Wang Y, Yao J, Lee H, Srituravanich W and Zhang X 2008 Nano Lett. 9 462
[19] Yin Y, Li T, Xu P, Jin H and Zhu S 2011 Appl. Phys. Lett. 98 093105
[20] Li H H, Chen J and Wang Q K 2010 Chin. Phys. B 19 114203
[21] Li Z, Yang Y, Kong X, Zhou W and Tian J 2009 J. Opt. 11 105002
[22] Cui Y and He S 2009 Opt. Lett. 34 16
[23] Taflove A and Hagness S C 1995 Computational Electrodynamics:the Finite-Difference Time-domain Method (Boston:Artech House) Vol. 347
[24] Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic Press) p. 547
[25] Johnson P and Christy R 1972 Phys. Rev. B 6 4370
[26] Kawata S, Ono A and Verma P 2008 Nature Photonics 2 438
[27] Gordon R and Brolo A 2005 Opt. Express 13 1933
[1] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[2] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[3] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[4] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[5] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[6] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[7] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[8] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[9] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[10] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[11] Bridge-free fabrication process for Al/AlOx/Al Josephson junctions
Ke Zhang(张珂), Meng-Meng Li(李蒙蒙), Qiang Liu(刘强), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(7): 078501.
[12] Theoretical study of micro-optical structure fabrication based on sample rotation and two-laser-beam interference
Yizhen Chen(陈宜臻), Xiangxian Wang(王向贤), Ru Wang(王茹), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2017, 26(5): 054203.
[13] Theoretical investigation of hierarchical sub-wavelength photonic structures fabricated using high-order waveguide-mode interference lithograph
Ru Wang(王茹), Xiangxian Wang(王向贤), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2017, 26(2): 024202.
[14] Measurement and analysis of the surface roughness of Ag film used in plasmonic lithography
Gao-Feng Liang(梁高峰), Jiao Jiao(焦蛟), Xian-Gang Luo(罗先刚), Qing Zhao(赵青). Chin. Phys. B, 2017, 26(1): 016801.
[15] Diffraction properties of binary graphene sheet arrays
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国). Chin. Phys. B, 2017, 26(1): 017302.
No Suggested Reading articles found!